On Application of Contemporary Proof of the Sforza Formula to Computation of Volumes of Hyperbolic Tetrahedra of Special Kind
In this paper, we use the contemporary proof (by Abrosimov and Mednykh) of the Sforza formula for volume of an arbitrary non-Euclidean tetrahedron to derive new formulas that express volumes of hyperbolic tetrahedra of special kind (orthoschemes and tetrahedra with the symmetry group S 4 ) via dihed...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-08, Vol.265 (5), p.791-802 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 802 |
---|---|
container_issue | 5 |
container_start_page | 791 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 265 |
creator | Krasnov, V. A. |
description | In this paper, we use the contemporary proof (by Abrosimov and Mednykh) of the Sforza formula for volume of an arbitrary non-Euclidean tetrahedron to derive new formulas that express volumes of hyperbolic tetrahedra of special kind (orthoschemes and tetrahedra with the symmetry group
S
4
) via dihedral angles. |
doi_str_mv | 10.1007/s10958-022-06085-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2718226121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A721949916</galeid><sourcerecordid>A721949916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2983-b05bfd50de1baadf0333447d5f577a796bf7d9ba424bbbe725a87ec712d9fcab3</originalsourceid><addsrcrecordid>eNp9kl1rFDEUhgdRsFb_gFcBr7yYNh8zk8nlslhbWqi41duQj5NtykwyJjPQCv53s65YFhZJIIeT5z0n5LxV9Z7gM4IxP88Ei7avMaU17nDf1uxFdUJazuqei_ZliTGnNWO8eV29yfkBF1HXs5Pq121Aq2kavFGzjwFFh9YxzDBOMan0hL6kWFJlz_eANi6mnwpdxDQug0JzLOw4LfM_6fc4LCPkXXj5NEHSsRRGdzAndQ82qd3FZgLj1YCufbBvq1dODRne_T1Pq28Xn-7Wl_XN7eer9eqmNlT0rNa41c622ALRSlmHGWNNw23rWs4VF5123AqtGtporYHTVvUcDCfUCmeUZqfVh33dKcUfC-RZPsQlhdJSUk56SjtCyTO1VQNIH1ws7zajz0auOCWiEYJ0haqPUFsIkNQQAzhf0gf82RG-LAujN0cFHw8EZjePx3mrlpzl1ebrIUv3rEkx5wROTsmPZXCSYLlzhtw7QxZnyD_OkKyI2F6UCxy2kJ5_4z-q3-_yusQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718226121</pqid></control><display><type>article</type><title>On Application of Contemporary Proof of the Sforza Formula to Computation of Volumes of Hyperbolic Tetrahedra of Special Kind</title><source>SpringerNature Journals</source><creator>Krasnov, V. A.</creator><creatorcontrib>Krasnov, V. A.</creatorcontrib><description>In this paper, we use the contemporary proof (by Abrosimov and Mednykh) of the Sforza formula for volume of an arbitrary non-Euclidean tetrahedron to derive new formulas that express volumes of hyperbolic tetrahedra of special kind (orthoschemes and tetrahedra with the symmetry group
S
4
) via dihedral angles.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-022-06085-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Mathematics ; Mathematics and Statistics ; Tetrahedra</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2022-08, Vol.265 (5), p.791-802</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2983-b05bfd50de1baadf0333447d5f577a796bf7d9ba424bbbe725a87ec712d9fcab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-022-06085-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-022-06085-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Krasnov, V. A.</creatorcontrib><title>On Application of Contemporary Proof of the Sforza Formula to Computation of Volumes of Hyperbolic Tetrahedra of Special Kind</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>In this paper, we use the contemporary proof (by Abrosimov and Mednykh) of the Sforza formula for volume of an arbitrary non-Euclidean tetrahedron to derive new formulas that express volumes of hyperbolic tetrahedra of special kind (orthoschemes and tetrahedra with the symmetry group
S
4
) via dihedral angles.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Tetrahedra</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kl1rFDEUhgdRsFb_gFcBr7yYNh8zk8nlslhbWqi41duQj5NtykwyJjPQCv53s65YFhZJIIeT5z0n5LxV9Z7gM4IxP88Ei7avMaU17nDf1uxFdUJazuqei_ZliTGnNWO8eV29yfkBF1HXs5Pq121Aq2kavFGzjwFFh9YxzDBOMan0hL6kWFJlz_eANi6mnwpdxDQug0JzLOw4LfM_6fc4LCPkXXj5NEHSsRRGdzAndQ82qd3FZgLj1YCufbBvq1dODRne_T1Pq28Xn-7Wl_XN7eer9eqmNlT0rNa41c622ALRSlmHGWNNw23rWs4VF5123AqtGtporYHTVvUcDCfUCmeUZqfVh33dKcUfC-RZPsQlhdJSUk56SjtCyTO1VQNIH1ws7zajz0auOCWiEYJ0haqPUFsIkNQQAzhf0gf82RG-LAujN0cFHw8EZjePx3mrlpzl1ebrIUv3rEkx5wROTsmPZXCSYLlzhtw7QxZnyD_OkKyI2F6UCxy2kJ5_4z-q3-_yusQ</recordid><startdate>20220809</startdate><enddate>20220809</enddate><creator>Krasnov, V. A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20220809</creationdate><title>On Application of Contemporary Proof of the Sforza Formula to Computation of Volumes of Hyperbolic Tetrahedra of Special Kind</title><author>Krasnov, V. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2983-b05bfd50de1baadf0333447d5f577a796bf7d9ba424bbbe725a87ec712d9fcab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Tetrahedra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krasnov, V. A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krasnov, V. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Application of Contemporary Proof of the Sforza Formula to Computation of Volumes of Hyperbolic Tetrahedra of Special Kind</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2022-08-09</date><risdate>2022</risdate><volume>265</volume><issue>5</issue><spage>791</spage><epage>802</epage><pages>791-802</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>In this paper, we use the contemporary proof (by Abrosimov and Mednykh) of the Sforza formula for volume of an arbitrary non-Euclidean tetrahedron to derive new formulas that express volumes of hyperbolic tetrahedra of special kind (orthoschemes and tetrahedra with the symmetry group
S
4
) via dihedral angles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-022-06085-3</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2022-08, Vol.265 (5), p.791-802 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2718226121 |
source | SpringerNature Journals |
subjects | Mathematics Mathematics and Statistics Tetrahedra |
title | On Application of Contemporary Proof of the Sforza Formula to Computation of Volumes of Hyperbolic Tetrahedra of Special Kind |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A23%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Application%20of%20Contemporary%20Proof%20of%20the%20Sforza%20Formula%20to%20Computation%20of%20Volumes%20of%20Hyperbolic%20Tetrahedra%20of%20Special%20Kind&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Krasnov,%20V.%20A.&rft.date=2022-08-09&rft.volume=265&rft.issue=5&rft.spage=791&rft.epage=802&rft.pages=791-802&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-022-06085-3&rft_dat=%3Cgale_proqu%3EA721949916%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718226121&rft_id=info:pmid/&rft_galeid=A721949916&rfr_iscdi=true |