An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization

Bearing is regarded as one of the core elements in rotating machines and its fault diagnosis is essential for better reliability and availability of the rotating machines. This paper puts forward an intelligent vibration signal-based fault diagnosis approach for bearing faults identification at an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-10, Vol.236 (19), p.10378-10391
Hauptverfasser: Mishra, Rismaya Kumar, Choudhary, Anurag, Mohanty, AR, Fatima, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10391
container_issue 19
container_start_page 10378
container_title Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science
container_volume 236
creator Mishra, Rismaya Kumar
Choudhary, Anurag
Mohanty, AR
Fatima, S
description Bearing is regarded as one of the core elements in rotating machines and its fault diagnosis is essential for better reliability and availability of the rotating machines. This paper puts forward an intelligent vibration signal-based fault diagnosis approach for bearing faults identification at an early stage, irrespective of speed conditions. The proposed methodology comprises of a frequency shift-based hybrid signal processing technique that involves a combination of Hilbert Transform (HT) and Discrete Wavelet Transform (DWT) followed by sliding window-based feature extraction. Thereafter, a newly developed Henry Gas Solubility Optimization (HGSO) is implemented to select the relevant features. At last, the optimal attributes are used to train the Artificial Neural Network (ANN) model for the classification of the different bearing faults. To test the effectiveness of the speed independent model, experimental validation was done with constant and varying speed conditions. The results demonstrate that the proposed methodology has a tremendous potential to eliminate unplanned failures caused by bearing in rotating machinery.
doi_str_mv 10.1177/09544062221101737
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718115916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544062221101737</sage_id><sourcerecordid>2718115916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-144419080bdf3fb22b03f56a0283be4d14fdd13e22780b1eb0ba1e50a445ae613</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89ZMNvt1LMUvKHjR85I02TUlTWome1h_vbtU8CDOZQ7zPC_DS8gtsBVAVd2zphCClZxzAAZVXp2RBWcCMt7U-TlZzPdsBi7JFeKeTcPLYkH82lPrk3HO9sYnqoyM1ve0k4NLVFvZ-4AWqZJoNA2efowqWk3R9l46eoxhZxBnQ3pNn42PI-0lUgxuUNbZNNJwTPZgv2SywV-Ti046NDc_e0neHx_eNs_Z9vXpZbPeZjsueMpACAENq5nSXd4pzhXLu6KUjNe5MkKD6LSG3HBeTQwYxZQEUzApRCFNCfmS3J1ypwc_B4Op3YchTh9jyyuoAYoGyomCE7WLATGarj1Ge5BxbIG1c63tn1onZ3VyUPbmN_V_4RtOyXiG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718115916</pqid></control><display><type>article</type><title>An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization</title><source>SAGE Complete A-Z List</source><creator>Mishra, Rismaya Kumar ; Choudhary, Anurag ; Mohanty, AR ; Fatima, S</creator><creatorcontrib>Mishra, Rismaya Kumar ; Choudhary, Anurag ; Mohanty, AR ; Fatima, S</creatorcontrib><description>Bearing is regarded as one of the core elements in rotating machines and its fault diagnosis is essential for better reliability and availability of the rotating machines. This paper puts forward an intelligent vibration signal-based fault diagnosis approach for bearing faults identification at an early stage, irrespective of speed conditions. The proposed methodology comprises of a frequency shift-based hybrid signal processing technique that involves a combination of Hilbert Transform (HT) and Discrete Wavelet Transform (DWT) followed by sliding window-based feature extraction. Thereafter, a newly developed Henry Gas Solubility Optimization (HGSO) is implemented to select the relevant features. At last, the optimal attributes are used to train the Artificial Neural Network (ANN) model for the classification of the different bearing faults. To test the effectiveness of the speed independent model, experimental validation was done with constant and varying speed conditions. The results demonstrate that the proposed methodology has a tremendous potential to eliminate unplanned failures caused by bearing in rotating machinery.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/09544062221101737</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial neural networks ; Discrete Wavelet Transform ; Fault detection ; Fault diagnosis ; Feature extraction ; Frequency shift ; Gas solubility ; Hilbert transformation ; Optimization ; Rotating machinery ; Rotating machines ; Signal processing ; Wavelet transforms</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-10, Vol.236 (19), p.10378-10391</ispartof><rights>IMechE 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-144419080bdf3fb22b03f56a0283be4d14fdd13e22780b1eb0ba1e50a445ae613</citedby><cites>FETCH-LOGICAL-c242t-144419080bdf3fb22b03f56a0283be4d14fdd13e22780b1eb0ba1e50a445ae613</cites><orcidid>0000-0002-3359-1228 ; 0000-0002-1998-5431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544062221101737$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544062221101737$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Mishra, Rismaya Kumar</creatorcontrib><creatorcontrib>Choudhary, Anurag</creatorcontrib><creatorcontrib>Mohanty, AR</creatorcontrib><creatorcontrib>Fatima, S</creatorcontrib><title>An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>Bearing is regarded as one of the core elements in rotating machines and its fault diagnosis is essential for better reliability and availability of the rotating machines. This paper puts forward an intelligent vibration signal-based fault diagnosis approach for bearing faults identification at an early stage, irrespective of speed conditions. The proposed methodology comprises of a frequency shift-based hybrid signal processing technique that involves a combination of Hilbert Transform (HT) and Discrete Wavelet Transform (DWT) followed by sliding window-based feature extraction. Thereafter, a newly developed Henry Gas Solubility Optimization (HGSO) is implemented to select the relevant features. At last, the optimal attributes are used to train the Artificial Neural Network (ANN) model for the classification of the different bearing faults. To test the effectiveness of the speed independent model, experimental validation was done with constant and varying speed conditions. The results demonstrate that the proposed methodology has a tremendous potential to eliminate unplanned failures caused by bearing in rotating machinery.</description><subject>Artificial neural networks</subject><subject>Discrete Wavelet Transform</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Frequency shift</subject><subject>Gas solubility</subject><subject>Hilbert transformation</subject><subject>Optimization</subject><subject>Rotating machinery</subject><subject>Rotating machines</subject><subject>Signal processing</subject><subject>Wavelet transforms</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89ZMNvt1LMUvKHjR85I02TUlTWome1h_vbtU8CDOZQ7zPC_DS8gtsBVAVd2zphCClZxzAAZVXp2RBWcCMt7U-TlZzPdsBi7JFeKeTcPLYkH82lPrk3HO9sYnqoyM1ve0k4NLVFvZ-4AWqZJoNA2efowqWk3R9l46eoxhZxBnQ3pNn42PI-0lUgxuUNbZNNJwTPZgv2SywV-Ti046NDc_e0neHx_eNs_Z9vXpZbPeZjsueMpACAENq5nSXd4pzhXLu6KUjNe5MkKD6LSG3HBeTQwYxZQEUzApRCFNCfmS3J1ypwc_B4Op3YchTh9jyyuoAYoGyomCE7WLATGarj1Ge5BxbIG1c63tn1onZ3VyUPbmN_V_4RtOyXiG</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Mishra, Rismaya Kumar</creator><creator>Choudhary, Anurag</creator><creator>Mohanty, AR</creator><creator>Fatima, S</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-3359-1228</orcidid><orcidid>https://orcid.org/0000-0002-1998-5431</orcidid></search><sort><creationdate>202210</creationdate><title>An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization</title><author>Mishra, Rismaya Kumar ; Choudhary, Anurag ; Mohanty, AR ; Fatima, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-144419080bdf3fb22b03f56a0283be4d14fdd13e22780b1eb0ba1e50a445ae613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Discrete Wavelet Transform</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Frequency shift</topic><topic>Gas solubility</topic><topic>Hilbert transformation</topic><topic>Optimization</topic><topic>Rotating machinery</topic><topic>Rotating machines</topic><topic>Signal processing</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Rismaya Kumar</creatorcontrib><creatorcontrib>Choudhary, Anurag</creatorcontrib><creatorcontrib>Mohanty, AR</creatorcontrib><creatorcontrib>Fatima, S</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Rismaya Kumar</au><au>Choudhary, Anurag</au><au>Mohanty, AR</au><au>Fatima, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2022-10</date><risdate>2022</risdate><volume>236</volume><issue>19</issue><spage>10378</spage><epage>10391</epage><pages>10378-10391</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Bearing is regarded as one of the core elements in rotating machines and its fault diagnosis is essential for better reliability and availability of the rotating machines. This paper puts forward an intelligent vibration signal-based fault diagnosis approach for bearing faults identification at an early stage, irrespective of speed conditions. The proposed methodology comprises of a frequency shift-based hybrid signal processing technique that involves a combination of Hilbert Transform (HT) and Discrete Wavelet Transform (DWT) followed by sliding window-based feature extraction. Thereafter, a newly developed Henry Gas Solubility Optimization (HGSO) is implemented to select the relevant features. At last, the optimal attributes are used to train the Artificial Neural Network (ANN) model for the classification of the different bearing faults. To test the effectiveness of the speed independent model, experimental validation was done with constant and varying speed conditions. The results demonstrate that the proposed methodology has a tremendous potential to eliminate unplanned failures caused by bearing in rotating machinery.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544062221101737</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3359-1228</orcidid><orcidid>https://orcid.org/0000-0002-1998-5431</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0954-4062
ispartof Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-10, Vol.236 (19), p.10378-10391
issn 0954-4062
2041-2983
language eng
recordid cdi_proquest_journals_2718115916
source SAGE Complete A-Z List
subjects Artificial neural networks
Discrete Wavelet Transform
Fault detection
Fault diagnosis
Feature extraction
Frequency shift
Gas solubility
Hilbert transformation
Optimization
Rotating machinery
Rotating machines
Signal processing
Wavelet transforms
title An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intelligent%20bearing%20fault%20diagnosis%20based%20on%20hybrid%20signal%20processing%20and%20Henry%20gas%20solubility%20optimization&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Mishra,%20Rismaya%20Kumar&rft.date=2022-10&rft.volume=236&rft.issue=19&rft.spage=10378&rft.epage=10391&rft.pages=10378-10391&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/09544062221101737&rft_dat=%3Cproquest_cross%3E2718115916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718115916&rft_id=info:pmid/&rft_sage_id=10.1177_09544062221101737&rfr_iscdi=true