An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization
Bearing is regarded as one of the core elements in rotating machines and its fault diagnosis is essential for better reliability and availability of the rotating machines. This paper puts forward an intelligent vibration signal-based fault diagnosis approach for bearing faults identification at an e...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-10, Vol.236 (19), p.10378-10391 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10391 |
---|---|
container_issue | 19 |
container_start_page | 10378 |
container_title | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science |
container_volume | 236 |
creator | Mishra, Rismaya Kumar Choudhary, Anurag Mohanty, AR Fatima, S |
description | Bearing is regarded as one of the core elements in rotating machines and its fault diagnosis is essential for better reliability and availability of the rotating machines. This paper puts forward an intelligent vibration signal-based fault diagnosis approach for bearing faults identification at an early stage, irrespective of speed conditions. The proposed methodology comprises of a frequency shift-based hybrid signal processing technique that involves a combination of Hilbert Transform (HT) and Discrete Wavelet Transform (DWT) followed by sliding window-based feature extraction. Thereafter, a newly developed Henry Gas Solubility Optimization (HGSO) is implemented to select the relevant features. At last, the optimal attributes are used to train the Artificial Neural Network (ANN) model for the classification of the different bearing faults. To test the effectiveness of the speed independent model, experimental validation was done with constant and varying speed conditions. The results demonstrate that the proposed methodology has a tremendous potential to eliminate unplanned failures caused by bearing in rotating machinery. |
doi_str_mv | 10.1177/09544062221101737 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2718115916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_09544062221101737</sage_id><sourcerecordid>2718115916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-144419080bdf3fb22b03f56a0283be4d14fdd13e22780b1eb0ba1e50a445ae613</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvA89ZMNvt1LMUvKHjR85I02TUlTWome1h_vbtU8CDOZQ7zPC_DS8gtsBVAVd2zphCClZxzAAZVXp2RBWcCMt7U-TlZzPdsBi7JFeKeTcPLYkH82lPrk3HO9sYnqoyM1ve0k4NLVFvZ-4AWqZJoNA2efowqWk3R9l46eoxhZxBnQ3pNn42PI-0lUgxuUNbZNNJwTPZgv2SywV-Ti046NDc_e0neHx_eNs_Z9vXpZbPeZjsueMpACAENq5nSXd4pzhXLu6KUjNe5MkKD6LSG3HBeTQwYxZQEUzApRCFNCfmS3J1ypwc_B4Op3YchTh9jyyuoAYoGyomCE7WLATGarj1Ge5BxbIG1c63tn1onZ3VyUPbmN_V_4RtOyXiG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718115916</pqid></control><display><type>article</type><title>An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization</title><source>SAGE Complete A-Z List</source><creator>Mishra, Rismaya Kumar ; Choudhary, Anurag ; Mohanty, AR ; Fatima, S</creator><creatorcontrib>Mishra, Rismaya Kumar ; Choudhary, Anurag ; Mohanty, AR ; Fatima, S</creatorcontrib><description>Bearing is regarded as one of the core elements in rotating machines and its fault diagnosis is essential for better reliability and availability of the rotating machines. This paper puts forward an intelligent vibration signal-based fault diagnosis approach for bearing faults identification at an early stage, irrespective of speed conditions. The proposed methodology comprises of a frequency shift-based hybrid signal processing technique that involves a combination of Hilbert Transform (HT) and Discrete Wavelet Transform (DWT) followed by sliding window-based feature extraction. Thereafter, a newly developed Henry Gas Solubility Optimization (HGSO) is implemented to select the relevant features. At last, the optimal attributes are used to train the Artificial Neural Network (ANN) model for the classification of the different bearing faults. To test the effectiveness of the speed independent model, experimental validation was done with constant and varying speed conditions. The results demonstrate that the proposed methodology has a tremendous potential to eliminate unplanned failures caused by bearing in rotating machinery.</description><identifier>ISSN: 0954-4062</identifier><identifier>EISSN: 2041-2983</identifier><identifier>DOI: 10.1177/09544062221101737</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial neural networks ; Discrete Wavelet Transform ; Fault detection ; Fault diagnosis ; Feature extraction ; Frequency shift ; Gas solubility ; Hilbert transformation ; Optimization ; Rotating machinery ; Rotating machines ; Signal processing ; Wavelet transforms</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-10, Vol.236 (19), p.10378-10391</ispartof><rights>IMechE 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-144419080bdf3fb22b03f56a0283be4d14fdd13e22780b1eb0ba1e50a445ae613</citedby><cites>FETCH-LOGICAL-c242t-144419080bdf3fb22b03f56a0283be4d14fdd13e22780b1eb0ba1e50a445ae613</cites><orcidid>0000-0002-3359-1228 ; 0000-0002-1998-5431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/09544062221101737$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/09544062221101737$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21799,27903,27904,43600,43601</link.rule.ids></links><search><creatorcontrib>Mishra, Rismaya Kumar</creatorcontrib><creatorcontrib>Choudhary, Anurag</creatorcontrib><creatorcontrib>Mohanty, AR</creatorcontrib><creatorcontrib>Fatima, S</creatorcontrib><title>An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization</title><title>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</title><description>Bearing is regarded as one of the core elements in rotating machines and its fault diagnosis is essential for better reliability and availability of the rotating machines. This paper puts forward an intelligent vibration signal-based fault diagnosis approach for bearing faults identification at an early stage, irrespective of speed conditions. The proposed methodology comprises of a frequency shift-based hybrid signal processing technique that involves a combination of Hilbert Transform (HT) and Discrete Wavelet Transform (DWT) followed by sliding window-based feature extraction. Thereafter, a newly developed Henry Gas Solubility Optimization (HGSO) is implemented to select the relevant features. At last, the optimal attributes are used to train the Artificial Neural Network (ANN) model for the classification of the different bearing faults. To test the effectiveness of the speed independent model, experimental validation was done with constant and varying speed conditions. The results demonstrate that the proposed methodology has a tremendous potential to eliminate unplanned failures caused by bearing in rotating machinery.</description><subject>Artificial neural networks</subject><subject>Discrete Wavelet Transform</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Feature extraction</subject><subject>Frequency shift</subject><subject>Gas solubility</subject><subject>Hilbert transformation</subject><subject>Optimization</subject><subject>Rotating machinery</subject><subject>Rotating machines</subject><subject>Signal processing</subject><subject>Wavelet transforms</subject><issn>0954-4062</issn><issn>2041-2983</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvA89ZMNvt1LMUvKHjR85I02TUlTWome1h_vbtU8CDOZQ7zPC_DS8gtsBVAVd2zphCClZxzAAZVXp2RBWcCMt7U-TlZzPdsBi7JFeKeTcPLYkH82lPrk3HO9sYnqoyM1ve0k4NLVFvZ-4AWqZJoNA2efowqWk3R9l46eoxhZxBnQ3pNn42PI-0lUgxuUNbZNNJwTPZgv2SywV-Ti046NDc_e0neHx_eNs_Z9vXpZbPeZjsueMpACAENq5nSXd4pzhXLu6KUjNe5MkKD6LSG3HBeTQwYxZQEUzApRCFNCfmS3J1ypwc_B4Op3YchTh9jyyuoAYoGyomCE7WLATGarj1Ge5BxbIG1c63tn1onZ3VyUPbmN_V_4RtOyXiG</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Mishra, Rismaya Kumar</creator><creator>Choudhary, Anurag</creator><creator>Mohanty, AR</creator><creator>Fatima, S</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0002-3359-1228</orcidid><orcidid>https://orcid.org/0000-0002-1998-5431</orcidid></search><sort><creationdate>202210</creationdate><title>An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization</title><author>Mishra, Rismaya Kumar ; Choudhary, Anurag ; Mohanty, AR ; Fatima, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-144419080bdf3fb22b03f56a0283be4d14fdd13e22780b1eb0ba1e50a445ae613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Discrete Wavelet Transform</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Feature extraction</topic><topic>Frequency shift</topic><topic>Gas solubility</topic><topic>Hilbert transformation</topic><topic>Optimization</topic><topic>Rotating machinery</topic><topic>Rotating machines</topic><topic>Signal processing</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mishra, Rismaya Kumar</creatorcontrib><creatorcontrib>Choudhary, Anurag</creatorcontrib><creatorcontrib>Mohanty, AR</creatorcontrib><creatorcontrib>Fatima, S</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mishra, Rismaya Kumar</au><au>Choudhary, Anurag</au><au>Mohanty, AR</au><au>Fatima, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science</jtitle><date>2022-10</date><risdate>2022</risdate><volume>236</volume><issue>19</issue><spage>10378</spage><epage>10391</epage><pages>10378-10391</pages><issn>0954-4062</issn><eissn>2041-2983</eissn><abstract>Bearing is regarded as one of the core elements in rotating machines and its fault diagnosis is essential for better reliability and availability of the rotating machines. This paper puts forward an intelligent vibration signal-based fault diagnosis approach for bearing faults identification at an early stage, irrespective of speed conditions. The proposed methodology comprises of a frequency shift-based hybrid signal processing technique that involves a combination of Hilbert Transform (HT) and Discrete Wavelet Transform (DWT) followed by sliding window-based feature extraction. Thereafter, a newly developed Henry Gas Solubility Optimization (HGSO) is implemented to select the relevant features. At last, the optimal attributes are used to train the Artificial Neural Network (ANN) model for the classification of the different bearing faults. To test the effectiveness of the speed independent model, experimental validation was done with constant and varying speed conditions. The results demonstrate that the proposed methodology has a tremendous potential to eliminate unplanned failures caused by bearing in rotating machinery.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/09544062221101737</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3359-1228</orcidid><orcidid>https://orcid.org/0000-0002-1998-5431</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-4062 |
ispartof | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science, 2022-10, Vol.236 (19), p.10378-10391 |
issn | 0954-4062 2041-2983 |
language | eng |
recordid | cdi_proquest_journals_2718115916 |
source | SAGE Complete A-Z List |
subjects | Artificial neural networks Discrete Wavelet Transform Fault detection Fault diagnosis Feature extraction Frequency shift Gas solubility Hilbert transformation Optimization Rotating machinery Rotating machines Signal processing Wavelet transforms |
title | An intelligent bearing fault diagnosis based on hybrid signal processing and Henry gas solubility optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A13%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intelligent%20bearing%20fault%20diagnosis%20based%20on%20hybrid%20signal%20processing%20and%20Henry%20gas%20solubility%20optimization&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20C,%20Journal%20of%20mechanical%20engineering%20science&rft.au=Mishra,%20Rismaya%20Kumar&rft.date=2022-10&rft.volume=236&rft.issue=19&rft.spage=10378&rft.epage=10391&rft.pages=10378-10391&rft.issn=0954-4062&rft.eissn=2041-2983&rft_id=info:doi/10.1177/09544062221101737&rft_dat=%3Cproquest_cross%3E2718115916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718115916&rft_id=info:pmid/&rft_sage_id=10.1177_09544062221101737&rfr_iscdi=true |