BERTBooster: A knowledge enhancement method jointing incremental training and gradient optimization
The knowledge‐enhanced BERT model solves the problem of lacking knowledge in downstream tasks by injecting external expertize, and achieves higher accuracy compared with BERT model. However, owning to large‐scale external knowledge is utilized into knowledge‐enhanced BERT, some shortcomings comes su...
Gespeichert in:
Veröffentlicht in: | International journal of intelligent systems 2022-11, Vol.37 (11), p.9390-9403 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9403 |
---|---|
container_issue | 11 |
container_start_page | 9390 |
container_title | International journal of intelligent systems |
container_volume | 37 |
creator | Jiang, Wenchao Lu, Jiarong Liang, Tiancai Hong, Xiao Lu, Jianfeng Wu, Tao |
description | The knowledge‐enhanced BERT model solves the problem of lacking knowledge in downstream tasks by injecting external expertize, and achieves higher accuracy compared with BERT model. However, owning to large‐scale external knowledge is utilized into knowledge‐enhanced BERT, some shortcomings comes such as information noise, lower accuracy and weak generalization ability, and so on. To solve this problem, a knowledge enhancement method BERTBooster which combines incremental learning and gradient optimization is proposed. BERTBooster disassembles the input text corpus into entity noun sets through entity noun recognition, and uses the incremental learning task denoising entity auto‐encoder to create an incremental task set of entity nouns and external knowledge triples. Furthermore, BERTBooster introduces a new gradient optimization algorithm ChildTuningF into BERT model to improve the generalization ability. BERTBooster can effectively improve the factual knowledge cognition ability of CAGBERT model and improve the accuracy of the model in downstream tasks. Experiments are carried out on six public data sets such as Book_Review, LCQMC, XNLI, Law_QA, Insureace_QA, and NLPCC‐DBQA. The experimental results show that the accuracy rate in downstream tasks is increased by 0.65% on average after using BERTBooster on CAGBERT. |
doi_str_mv | 10.1002/int.22998 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2717928702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717928702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2928-3ea42e2ab30aa4c286d18f51f7c7e2821e3a252ef8a4146d73ef40eab4d0c1d93</originalsourceid><addsrcrecordid>eNp1kEFPAjEQhRujiYge_AdNPHlYaLuFdr2BQSUhmhhMvDWlnYXi0mK3hOCvd2G9eppk5nvvZR5Ct5T0KCGs73zqMVYU8gx1KClkRin9PEcdIiXPJBX5Jbqq6zUhlAo-6CAznrzPxyHUCeIDHuEvH_YV2CVg8CvtDWzAJ7yBtAoWr0Nj7_wSO2_i6aIrnKJ2_rjU3uJl1NYdFWGb3Mb96OSCv0YXpa5quPmbXfTxNJk_vmSzt-fp42iWGVYwmeWgOQOmFznRmhsmh5bKckBLYQQwySjkmg0YlFJzyodW5FByAnrBLTHUFnkX3bW-2xi-d1AntQ676JtIxQQVTYYgrKHuW8rEUNcRSrWNbqPjQVGijh2q5kl16rBh-y27dxUc_gfV9HXeKn4BK3p05g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717928702</pqid></control><display><type>article</type><title>BERTBooster: A knowledge enhancement method jointing incremental training and gradient optimization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jiang, Wenchao ; Lu, Jiarong ; Liang, Tiancai ; Hong, Xiao ; Lu, Jianfeng ; Wu, Tao</creator><creatorcontrib>Jiang, Wenchao ; Lu, Jiarong ; Liang, Tiancai ; Hong, Xiao ; Lu, Jianfeng ; Wu, Tao</creatorcontrib><description>The knowledge‐enhanced BERT model solves the problem of lacking knowledge in downstream tasks by injecting external expertize, and achieves higher accuracy compared with BERT model. However, owning to large‐scale external knowledge is utilized into knowledge‐enhanced BERT, some shortcomings comes such as information noise, lower accuracy and weak generalization ability, and so on. To solve this problem, a knowledge enhancement method BERTBooster which combines incremental learning and gradient optimization is proposed. BERTBooster disassembles the input text corpus into entity noun sets through entity noun recognition, and uses the incremental learning task denoising entity auto‐encoder to create an incremental task set of entity nouns and external knowledge triples. Furthermore, BERTBooster introduces a new gradient optimization algorithm ChildTuningF into BERT model to improve the generalization ability. BERTBooster can effectively improve the factual knowledge cognition ability of CAGBERT model and improve the accuracy of the model in downstream tasks. Experiments are carried out on six public data sets such as Book_Review, LCQMC, XNLI, Law_QA, Insureace_QA, and NLPCC‐DBQA. The experimental results show that the accuracy rate in downstream tasks is increased by 0.65% on average after using BERTBooster on CAGBERT.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.22998</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Accuracy ; Algorithms ; Cognition ; Cognitive tasks ; gradient optimization ; incremental training ; Intelligent systems ; Knowledge ; knowledge enhanced ; Machine learning ; Model accuracy ; natural language processing ; Optimization ; pretraining models</subject><ispartof>International journal of intelligent systems, 2022-11, Vol.37 (11), p.9390-9403</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2928-3ea42e2ab30aa4c286d18f51f7c7e2821e3a252ef8a4146d73ef40eab4d0c1d93</cites><orcidid>0000-0002-6300-1962 ; 0000-0002-6212-4741 ; 0000-0001-6834-1539 ; 0000-0002-9703-4084 ; 0000-0002-0823-0877 ; 0000-0001-5928-7286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.22998$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.22998$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45552,45553</link.rule.ids></links><search><creatorcontrib>Jiang, Wenchao</creatorcontrib><creatorcontrib>Lu, Jiarong</creatorcontrib><creatorcontrib>Liang, Tiancai</creatorcontrib><creatorcontrib>Hong, Xiao</creatorcontrib><creatorcontrib>Lu, Jianfeng</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><title>BERTBooster: A knowledge enhancement method jointing incremental training and gradient optimization</title><title>International journal of intelligent systems</title><description>The knowledge‐enhanced BERT model solves the problem of lacking knowledge in downstream tasks by injecting external expertize, and achieves higher accuracy compared with BERT model. However, owning to large‐scale external knowledge is utilized into knowledge‐enhanced BERT, some shortcomings comes such as information noise, lower accuracy and weak generalization ability, and so on. To solve this problem, a knowledge enhancement method BERTBooster which combines incremental learning and gradient optimization is proposed. BERTBooster disassembles the input text corpus into entity noun sets through entity noun recognition, and uses the incremental learning task denoising entity auto‐encoder to create an incremental task set of entity nouns and external knowledge triples. Furthermore, BERTBooster introduces a new gradient optimization algorithm ChildTuningF into BERT model to improve the generalization ability. BERTBooster can effectively improve the factual knowledge cognition ability of CAGBERT model and improve the accuracy of the model in downstream tasks. Experiments are carried out on six public data sets such as Book_Review, LCQMC, XNLI, Law_QA, Insureace_QA, and NLPCC‐DBQA. The experimental results show that the accuracy rate in downstream tasks is increased by 0.65% on average after using BERTBooster on CAGBERT.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cognition</subject><subject>Cognitive tasks</subject><subject>gradient optimization</subject><subject>incremental training</subject><subject>Intelligent systems</subject><subject>Knowledge</subject><subject>knowledge enhanced</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>natural language processing</subject><subject>Optimization</subject><subject>pretraining models</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAjEQhRujiYge_AdNPHlYaLuFdr2BQSUhmhhMvDWlnYXi0mK3hOCvd2G9eppk5nvvZR5Ct5T0KCGs73zqMVYU8gx1KClkRin9PEcdIiXPJBX5Jbqq6zUhlAo-6CAznrzPxyHUCeIDHuEvH_YV2CVg8CvtDWzAJ7yBtAoWr0Nj7_wSO2_i6aIrnKJ2_rjU3uJl1NYdFWGb3Mb96OSCv0YXpa5quPmbXfTxNJk_vmSzt-fp42iWGVYwmeWgOQOmFznRmhsmh5bKckBLYQQwySjkmg0YlFJzyodW5FByAnrBLTHUFnkX3bW-2xi-d1AntQ676JtIxQQVTYYgrKHuW8rEUNcRSrWNbqPjQVGijh2q5kl16rBh-y27dxUc_gfV9HXeKn4BK3p05g</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Jiang, Wenchao</creator><creator>Lu, Jiarong</creator><creator>Liang, Tiancai</creator><creator>Hong, Xiao</creator><creator>Lu, Jianfeng</creator><creator>Wu, Tao</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6300-1962</orcidid><orcidid>https://orcid.org/0000-0002-6212-4741</orcidid><orcidid>https://orcid.org/0000-0001-6834-1539</orcidid><orcidid>https://orcid.org/0000-0002-9703-4084</orcidid><orcidid>https://orcid.org/0000-0002-0823-0877</orcidid><orcidid>https://orcid.org/0000-0001-5928-7286</orcidid></search><sort><creationdate>202211</creationdate><title>BERTBooster: A knowledge enhancement method jointing incremental training and gradient optimization</title><author>Jiang, Wenchao ; Lu, Jiarong ; Liang, Tiancai ; Hong, Xiao ; Lu, Jianfeng ; Wu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2928-3ea42e2ab30aa4c286d18f51f7c7e2821e3a252ef8a4146d73ef40eab4d0c1d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cognition</topic><topic>Cognitive tasks</topic><topic>gradient optimization</topic><topic>incremental training</topic><topic>Intelligent systems</topic><topic>Knowledge</topic><topic>knowledge enhanced</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>natural language processing</topic><topic>Optimization</topic><topic>pretraining models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wenchao</creatorcontrib><creatorcontrib>Lu, Jiarong</creatorcontrib><creatorcontrib>Liang, Tiancai</creatorcontrib><creatorcontrib>Hong, Xiao</creatorcontrib><creatorcontrib>Lu, Jianfeng</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wenchao</au><au>Lu, Jiarong</au><au>Liang, Tiancai</au><au>Hong, Xiao</au><au>Lu, Jianfeng</au><au>Wu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BERTBooster: A knowledge enhancement method jointing incremental training and gradient optimization</atitle><jtitle>International journal of intelligent systems</jtitle><date>2022-11</date><risdate>2022</risdate><volume>37</volume><issue>11</issue><spage>9390</spage><epage>9403</epage><pages>9390-9403</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>The knowledge‐enhanced BERT model solves the problem of lacking knowledge in downstream tasks by injecting external expertize, and achieves higher accuracy compared with BERT model. However, owning to large‐scale external knowledge is utilized into knowledge‐enhanced BERT, some shortcomings comes such as information noise, lower accuracy and weak generalization ability, and so on. To solve this problem, a knowledge enhancement method BERTBooster which combines incremental learning and gradient optimization is proposed. BERTBooster disassembles the input text corpus into entity noun sets through entity noun recognition, and uses the incremental learning task denoising entity auto‐encoder to create an incremental task set of entity nouns and external knowledge triples. Furthermore, BERTBooster introduces a new gradient optimization algorithm ChildTuningF into BERT model to improve the generalization ability. BERTBooster can effectively improve the factual knowledge cognition ability of CAGBERT model and improve the accuracy of the model in downstream tasks. Experiments are carried out on six public data sets such as Book_Review, LCQMC, XNLI, Law_QA, Insureace_QA, and NLPCC‐DBQA. The experimental results show that the accuracy rate in downstream tasks is increased by 0.65% on average after using BERTBooster on CAGBERT.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1002/int.22998</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6300-1962</orcidid><orcidid>https://orcid.org/0000-0002-6212-4741</orcidid><orcidid>https://orcid.org/0000-0001-6834-1539</orcidid><orcidid>https://orcid.org/0000-0002-9703-4084</orcidid><orcidid>https://orcid.org/0000-0002-0823-0877</orcidid><orcidid>https://orcid.org/0000-0001-5928-7286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-8173 |
ispartof | International journal of intelligent systems, 2022-11, Vol.37 (11), p.9390-9403 |
issn | 0884-8173 1098-111X |
language | eng |
recordid | cdi_proquest_journals_2717928702 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Accuracy Algorithms Cognition Cognitive tasks gradient optimization incremental training Intelligent systems Knowledge knowledge enhanced Machine learning Model accuracy natural language processing Optimization pretraining models |
title | BERTBooster: A knowledge enhancement method jointing incremental training and gradient optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BERTBooster:%20A%20knowledge%20enhancement%20method%20jointing%20incremental%20training%20and%20gradient%20optimization&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Jiang,%20Wenchao&rft.date=2022-11&rft.volume=37&rft.issue=11&rft.spage=9390&rft.epage=9403&rft.pages=9390-9403&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.22998&rft_dat=%3Cproquest_cross%3E2717928702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717928702&rft_id=info:pmid/&rfr_iscdi=true |