BERTBooster: A knowledge enhancement method jointing incremental training and gradient optimization

The knowledge‐enhanced BERT model solves the problem of lacking knowledge in downstream tasks by injecting external expertize, and achieves higher accuracy compared with BERT model. However, owning to large‐scale external knowledge is utilized into knowledge‐enhanced BERT, some shortcomings comes su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of intelligent systems 2022-11, Vol.37 (11), p.9390-9403
Hauptverfasser: Jiang, Wenchao, Lu, Jiarong, Liang, Tiancai, Hong, Xiao, Lu, Jianfeng, Wu, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9403
container_issue 11
container_start_page 9390
container_title International journal of intelligent systems
container_volume 37
creator Jiang, Wenchao
Lu, Jiarong
Liang, Tiancai
Hong, Xiao
Lu, Jianfeng
Wu, Tao
description The knowledge‐enhanced BERT model solves the problem of lacking knowledge in downstream tasks by injecting external expertize, and achieves higher accuracy compared with BERT model. However, owning to large‐scale external knowledge is utilized into knowledge‐enhanced BERT, some shortcomings comes such as information noise, lower accuracy and weak generalization ability, and so on. To solve this problem, a knowledge enhancement method BERTBooster which combines incremental learning and gradient optimization is proposed. BERTBooster disassembles the input text corpus into entity noun sets through entity noun recognition, and uses the incremental learning task denoising entity auto‐encoder to create an incremental task set of entity nouns and external knowledge triples. Furthermore, BERTBooster introduces a new gradient optimization algorithm ChildTuningF into BERT model to improve the generalization ability. BERTBooster can effectively improve the factual knowledge cognition ability of CAGBERT model and improve the accuracy of the model in downstream tasks. Experiments are carried out on six public data sets such as Book_Review, LCQMC, XNLI, Law_QA, Insureace_QA, and NLPCC‐DBQA. The experimental results show that the accuracy rate in downstream tasks is increased by 0.65% on average after using BERTBooster on CAGBERT.
doi_str_mv 10.1002/int.22998
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2717928702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717928702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2928-3ea42e2ab30aa4c286d18f51f7c7e2821e3a252ef8a4146d73ef40eab4d0c1d93</originalsourceid><addsrcrecordid>eNp1kEFPAjEQhRujiYge_AdNPHlYaLuFdr2BQSUhmhhMvDWlnYXi0mK3hOCvd2G9eppk5nvvZR5Ct5T0KCGs73zqMVYU8gx1KClkRin9PEcdIiXPJBX5Jbqq6zUhlAo-6CAznrzPxyHUCeIDHuEvH_YV2CVg8CvtDWzAJ7yBtAoWr0Nj7_wSO2_i6aIrnKJ2_rjU3uJl1NYdFWGb3Mb96OSCv0YXpa5quPmbXfTxNJk_vmSzt-fp42iWGVYwmeWgOQOmFznRmhsmh5bKckBLYQQwySjkmg0YlFJzyodW5FByAnrBLTHUFnkX3bW-2xi-d1AntQ676JtIxQQVTYYgrKHuW8rEUNcRSrWNbqPjQVGijh2q5kl16rBh-y27dxUc_gfV9HXeKn4BK3p05g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717928702</pqid></control><display><type>article</type><title>BERTBooster: A knowledge enhancement method jointing incremental training and gradient optimization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jiang, Wenchao ; Lu, Jiarong ; Liang, Tiancai ; Hong, Xiao ; Lu, Jianfeng ; Wu, Tao</creator><creatorcontrib>Jiang, Wenchao ; Lu, Jiarong ; Liang, Tiancai ; Hong, Xiao ; Lu, Jianfeng ; Wu, Tao</creatorcontrib><description>The knowledge‐enhanced BERT model solves the problem of lacking knowledge in downstream tasks by injecting external expertize, and achieves higher accuracy compared with BERT model. However, owning to large‐scale external knowledge is utilized into knowledge‐enhanced BERT, some shortcomings comes such as information noise, lower accuracy and weak generalization ability, and so on. To solve this problem, a knowledge enhancement method BERTBooster which combines incremental learning and gradient optimization is proposed. BERTBooster disassembles the input text corpus into entity noun sets through entity noun recognition, and uses the incremental learning task denoising entity auto‐encoder to create an incremental task set of entity nouns and external knowledge triples. Furthermore, BERTBooster introduces a new gradient optimization algorithm ChildTuningF into BERT model to improve the generalization ability. BERTBooster can effectively improve the factual knowledge cognition ability of CAGBERT model and improve the accuracy of the model in downstream tasks. Experiments are carried out on six public data sets such as Book_Review, LCQMC, XNLI, Law_QA, Insureace_QA, and NLPCC‐DBQA. The experimental results show that the accuracy rate in downstream tasks is increased by 0.65% on average after using BERTBooster on CAGBERT.</description><identifier>ISSN: 0884-8173</identifier><identifier>EISSN: 1098-111X</identifier><identifier>DOI: 10.1002/int.22998</identifier><language>eng</language><publisher>New York: Hindawi Limited</publisher><subject>Accuracy ; Algorithms ; Cognition ; Cognitive tasks ; gradient optimization ; incremental training ; Intelligent systems ; Knowledge ; knowledge enhanced ; Machine learning ; Model accuracy ; natural language processing ; Optimization ; pretraining models</subject><ispartof>International journal of intelligent systems, 2022-11, Vol.37 (11), p.9390-9403</ispartof><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2928-3ea42e2ab30aa4c286d18f51f7c7e2821e3a252ef8a4146d73ef40eab4d0c1d93</cites><orcidid>0000-0002-6300-1962 ; 0000-0002-6212-4741 ; 0000-0001-6834-1539 ; 0000-0002-9703-4084 ; 0000-0002-0823-0877 ; 0000-0001-5928-7286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fint.22998$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fint.22998$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45552,45553</link.rule.ids></links><search><creatorcontrib>Jiang, Wenchao</creatorcontrib><creatorcontrib>Lu, Jiarong</creatorcontrib><creatorcontrib>Liang, Tiancai</creatorcontrib><creatorcontrib>Hong, Xiao</creatorcontrib><creatorcontrib>Lu, Jianfeng</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><title>BERTBooster: A knowledge enhancement method jointing incremental training and gradient optimization</title><title>International journal of intelligent systems</title><description>The knowledge‐enhanced BERT model solves the problem of lacking knowledge in downstream tasks by injecting external expertize, and achieves higher accuracy compared with BERT model. However, owning to large‐scale external knowledge is utilized into knowledge‐enhanced BERT, some shortcomings comes such as information noise, lower accuracy and weak generalization ability, and so on. To solve this problem, a knowledge enhancement method BERTBooster which combines incremental learning and gradient optimization is proposed. BERTBooster disassembles the input text corpus into entity noun sets through entity noun recognition, and uses the incremental learning task denoising entity auto‐encoder to create an incremental task set of entity nouns and external knowledge triples. Furthermore, BERTBooster introduces a new gradient optimization algorithm ChildTuningF into BERT model to improve the generalization ability. BERTBooster can effectively improve the factual knowledge cognition ability of CAGBERT model and improve the accuracy of the model in downstream tasks. Experiments are carried out on six public data sets such as Book_Review, LCQMC, XNLI, Law_QA, Insureace_QA, and NLPCC‐DBQA. The experimental results show that the accuracy rate in downstream tasks is increased by 0.65% on average after using BERTBooster on CAGBERT.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Cognition</subject><subject>Cognitive tasks</subject><subject>gradient optimization</subject><subject>incremental training</subject><subject>Intelligent systems</subject><subject>Knowledge</subject><subject>knowledge enhanced</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>natural language processing</subject><subject>Optimization</subject><subject>pretraining models</subject><issn>0884-8173</issn><issn>1098-111X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPAjEQhRujiYge_AdNPHlYaLuFdr2BQSUhmhhMvDWlnYXi0mK3hOCvd2G9eppk5nvvZR5Ct5T0KCGs73zqMVYU8gx1KClkRin9PEcdIiXPJBX5Jbqq6zUhlAo-6CAznrzPxyHUCeIDHuEvH_YV2CVg8CvtDWzAJ7yBtAoWr0Nj7_wSO2_i6aIrnKJ2_rjU3uJl1NYdFWGb3Mb96OSCv0YXpa5quPmbXfTxNJk_vmSzt-fp42iWGVYwmeWgOQOmFznRmhsmh5bKckBLYQQwySjkmg0YlFJzyodW5FByAnrBLTHUFnkX3bW-2xi-d1AntQ676JtIxQQVTYYgrKHuW8rEUNcRSrWNbqPjQVGijh2q5kl16rBh-y27dxUc_gfV9HXeKn4BK3p05g</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Jiang, Wenchao</creator><creator>Lu, Jiarong</creator><creator>Liang, Tiancai</creator><creator>Hong, Xiao</creator><creator>Lu, Jianfeng</creator><creator>Wu, Tao</creator><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6300-1962</orcidid><orcidid>https://orcid.org/0000-0002-6212-4741</orcidid><orcidid>https://orcid.org/0000-0001-6834-1539</orcidid><orcidid>https://orcid.org/0000-0002-9703-4084</orcidid><orcidid>https://orcid.org/0000-0002-0823-0877</orcidid><orcidid>https://orcid.org/0000-0001-5928-7286</orcidid></search><sort><creationdate>202211</creationdate><title>BERTBooster: A knowledge enhancement method jointing incremental training and gradient optimization</title><author>Jiang, Wenchao ; Lu, Jiarong ; Liang, Tiancai ; Hong, Xiao ; Lu, Jianfeng ; Wu, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2928-3ea42e2ab30aa4c286d18f51f7c7e2821e3a252ef8a4146d73ef40eab4d0c1d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Cognition</topic><topic>Cognitive tasks</topic><topic>gradient optimization</topic><topic>incremental training</topic><topic>Intelligent systems</topic><topic>Knowledge</topic><topic>knowledge enhanced</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>natural language processing</topic><topic>Optimization</topic><topic>pretraining models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wenchao</creatorcontrib><creatorcontrib>Lu, Jiarong</creatorcontrib><creatorcontrib>Liang, Tiancai</creatorcontrib><creatorcontrib>Hong, Xiao</creatorcontrib><creatorcontrib>Lu, Jianfeng</creatorcontrib><creatorcontrib>Wu, Tao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of intelligent systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wenchao</au><au>Lu, Jiarong</au><au>Liang, Tiancai</au><au>Hong, Xiao</au><au>Lu, Jianfeng</au><au>Wu, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BERTBooster: A knowledge enhancement method jointing incremental training and gradient optimization</atitle><jtitle>International journal of intelligent systems</jtitle><date>2022-11</date><risdate>2022</risdate><volume>37</volume><issue>11</issue><spage>9390</spage><epage>9403</epage><pages>9390-9403</pages><issn>0884-8173</issn><eissn>1098-111X</eissn><abstract>The knowledge‐enhanced BERT model solves the problem of lacking knowledge in downstream tasks by injecting external expertize, and achieves higher accuracy compared with BERT model. However, owning to large‐scale external knowledge is utilized into knowledge‐enhanced BERT, some shortcomings comes such as information noise, lower accuracy and weak generalization ability, and so on. To solve this problem, a knowledge enhancement method BERTBooster which combines incremental learning and gradient optimization is proposed. BERTBooster disassembles the input text corpus into entity noun sets through entity noun recognition, and uses the incremental learning task denoising entity auto‐encoder to create an incremental task set of entity nouns and external knowledge triples. Furthermore, BERTBooster introduces a new gradient optimization algorithm ChildTuningF into BERT model to improve the generalization ability. BERTBooster can effectively improve the factual knowledge cognition ability of CAGBERT model and improve the accuracy of the model in downstream tasks. Experiments are carried out on six public data sets such as Book_Review, LCQMC, XNLI, Law_QA, Insureace_QA, and NLPCC‐DBQA. The experimental results show that the accuracy rate in downstream tasks is increased by 0.65% on average after using BERTBooster on CAGBERT.</abstract><cop>New York</cop><pub>Hindawi Limited</pub><doi>10.1002/int.22998</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6300-1962</orcidid><orcidid>https://orcid.org/0000-0002-6212-4741</orcidid><orcidid>https://orcid.org/0000-0001-6834-1539</orcidid><orcidid>https://orcid.org/0000-0002-9703-4084</orcidid><orcidid>https://orcid.org/0000-0002-0823-0877</orcidid><orcidid>https://orcid.org/0000-0001-5928-7286</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0884-8173
ispartof International journal of intelligent systems, 2022-11, Vol.37 (11), p.9390-9403
issn 0884-8173
1098-111X
language eng
recordid cdi_proquest_journals_2717928702
source Wiley Online Library Journals Frontfile Complete
subjects Accuracy
Algorithms
Cognition
Cognitive tasks
gradient optimization
incremental training
Intelligent systems
Knowledge
knowledge enhanced
Machine learning
Model accuracy
natural language processing
Optimization
pretraining models
title BERTBooster: A knowledge enhancement method jointing incremental training and gradient optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T08%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BERTBooster:%20A%20knowledge%20enhancement%20method%20jointing%20incremental%20training%20and%20gradient%20optimization&rft.jtitle=International%20journal%20of%20intelligent%20systems&rft.au=Jiang,%20Wenchao&rft.date=2022-11&rft.volume=37&rft.issue=11&rft.spage=9390&rft.epage=9403&rft.pages=9390-9403&rft.issn=0884-8173&rft.eissn=1098-111X&rft_id=info:doi/10.1002/int.22998&rft_dat=%3Cproquest_cross%3E2717928702%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717928702&rft_id=info:pmid/&rfr_iscdi=true