Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex
Nitrogen reduction under mild conditions (room T and atmospheric P), using a non‐fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosph...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2022-10, Vol.134 (40), p.n/a |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 134 |
creator | Merakeb, Lydia Bennaamane, Soukaina De Freitas, Jérémy Clot, Eric Mézailles, Nicolas Robert, Marc |
description | Nitrogen reduction under mild conditions (room T and atmospheric P), using a non‐fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosphino complex [(PPP)MoI3], at room temperature and a moderately negative potential. A MoIV nitride species was generated, which is confirmed by electrochemistry and NMR studies. The reaction goes through two successive one electron reductions of the starting Mo species, coordination of a N2 molecule, and further splitting to a MoIV nitride complex. Preliminary DFT studies support the formation of a bridging MoIN2MoI dinitrogen dimer evolving to the Mo nitride via a low energy transition state. This example joins a short list of molecular complexes for N2 electrochemical reductive cleavage. It opens a door to electrochemical proton‐coupled electron transfer (PCET) conversion studies of N2 to NH3.
N2 splitting is achieved with a simple Mo complex at a carbon electrode. Controlled reduction (a 3 electron transfer process) at −1.4 V (vs. SCE) and ambient conditions (room T and atmospheric P) afforded a Mo nitride complex in 30 % yield. DFT studies support the transient formation of a MoI−N2−MoI bridging dimer. |
doi_str_mv | 10.1002/ange.202209899 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2717885211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717885211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2029-c3f29899a8b211840974894a31da5b382533c63474c4c5c93da35391a01fe7c43</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqWwMltiTvFXanusSilIBSSgs-U6TuvKiYOTUPrvcVUEI9N7w7n3PR0ArjEaYYTIra7XdkQQIUgKKU_AAOcEZ5Tn_BQMEGIsE4TJc3DRtluE0JhwOQDLp-Ct6b2OcJaWLgazsZUz2sNXW_Smc58WvjXedZ2r1zCU8M7VLmFrW8Od6zZQw1SxXxW27is4DVXj7dclOCu1b-3VzxyC5f3sffqQLV7mj9PJIjPpT5kZWpLDr1qsCMaCIcmZkExTXOh8RQXJKTVjyjgzzORG0kLTnEqsES4tN4wOwc2xt4nho7dtp7ahj3U6qQjHXIhkACdqdKRMDG0bbama6Cod9wojdVCnDurUr7oUkMfAznm7_4dWk-f57C_7DdE7ciQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717885211</pqid></control><display><type>article</type><title>Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex</title><source>Wiley Online Library All Journals</source><creator>Merakeb, Lydia ; Bennaamane, Soukaina ; De Freitas, Jérémy ; Clot, Eric ; Mézailles, Nicolas ; Robert, Marc</creator><creatorcontrib>Merakeb, Lydia ; Bennaamane, Soukaina ; De Freitas, Jérémy ; Clot, Eric ; Mézailles, Nicolas ; Robert, Marc</creatorcontrib><description>Nitrogen reduction under mild conditions (room T and atmospheric P), using a non‐fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosphino complex [(PPP)MoI3], at room temperature and a moderately negative potential. A MoIV nitride species was generated, which is confirmed by electrochemistry and NMR studies. The reaction goes through two successive one electron reductions of the starting Mo species, coordination of a N2 molecule, and further splitting to a MoIV nitride complex. Preliminary DFT studies support the formation of a bridging MoIN2MoI dinitrogen dimer evolving to the Mo nitride via a low energy transition state. This example joins a short list of molecular complexes for N2 electrochemical reductive cleavage. It opens a door to electrochemical proton‐coupled electron transfer (PCET) conversion studies of N2 to NH3.
N2 splitting is achieved with a simple Mo complex at a carbon electrode. Controlled reduction (a 3 electron transfer process) at −1.4 V (vs. SCE) and ambient conditions (room T and atmospheric P) afforded a Mo nitride complex in 30 % yield. DFT studies support the transient formation of a MoI−N2−MoI bridging dimer.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202209899</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Chemistry ; Coordination compounds ; Dinitrogen Reductive Splitting ; Electrochemical Reduction of N2 ; Electrochemistry ; Electron transfer ; Energy transition ; Metal complexes ; Molybdenum ; Molybdenum Complex ; Nitride Mo Complex ; Nitrides ; Nitrogen fixation ; Nitrogenation ; NMR ; Nuclear magnetic resonance ; Room temperature ; Splitting</subject><ispartof>Angewandte Chemie, 2022-10, Vol.134 (40), p.n/a</ispartof><rights>2022 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2029-c3f29899a8b211840974894a31da5b382533c63474c4c5c93da35391a01fe7c43</citedby><cites>FETCH-LOGICAL-c2029-c3f29899a8b211840974894a31da5b382533c63474c4c5c93da35391a01fe7c43</cites><orcidid>0000-0001-7042-4106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202209899$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202209899$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Merakeb, Lydia</creatorcontrib><creatorcontrib>Bennaamane, Soukaina</creatorcontrib><creatorcontrib>De Freitas, Jérémy</creatorcontrib><creatorcontrib>Clot, Eric</creatorcontrib><creatorcontrib>Mézailles, Nicolas</creatorcontrib><creatorcontrib>Robert, Marc</creatorcontrib><title>Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex</title><title>Angewandte Chemie</title><description>Nitrogen reduction under mild conditions (room T and atmospheric P), using a non‐fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosphino complex [(PPP)MoI3], at room temperature and a moderately negative potential. A MoIV nitride species was generated, which is confirmed by electrochemistry and NMR studies. The reaction goes through two successive one electron reductions of the starting Mo species, coordination of a N2 molecule, and further splitting to a MoIV nitride complex. Preliminary DFT studies support the formation of a bridging MoIN2MoI dinitrogen dimer evolving to the Mo nitride via a low energy transition state. This example joins a short list of molecular complexes for N2 electrochemical reductive cleavage. It opens a door to electrochemical proton‐coupled electron transfer (PCET) conversion studies of N2 to NH3.
N2 splitting is achieved with a simple Mo complex at a carbon electrode. Controlled reduction (a 3 electron transfer process) at −1.4 V (vs. SCE) and ambient conditions (room T and atmospheric P) afforded a Mo nitride complex in 30 % yield. DFT studies support the transient formation of a MoI−N2−MoI bridging dimer.</description><subject>Ammonia</subject><subject>Chemistry</subject><subject>Coordination compounds</subject><subject>Dinitrogen Reductive Splitting</subject><subject>Electrochemical Reduction of N2</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Energy transition</subject><subject>Metal complexes</subject><subject>Molybdenum</subject><subject>Molybdenum Complex</subject><subject>Nitride Mo Complex</subject><subject>Nitrides</subject><subject>Nitrogen fixation</subject><subject>Nitrogenation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Room temperature</subject><subject>Splitting</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD1PwzAURS0EEqWwMltiTvFXanusSilIBSSgs-U6TuvKiYOTUPrvcVUEI9N7w7n3PR0ArjEaYYTIra7XdkQQIUgKKU_AAOcEZ5Tn_BQMEGIsE4TJc3DRtluE0JhwOQDLp-Ct6b2OcJaWLgazsZUz2sNXW_Smc58WvjXedZ2r1zCU8M7VLmFrW8Od6zZQw1SxXxW27is4DVXj7dclOCu1b-3VzxyC5f3sffqQLV7mj9PJIjPpT5kZWpLDr1qsCMaCIcmZkExTXOh8RQXJKTVjyjgzzORG0kLTnEqsES4tN4wOwc2xt4nho7dtp7ahj3U6qQjHXIhkACdqdKRMDG0bbama6Cod9wojdVCnDurUr7oUkMfAznm7_4dWk-f57C_7DdE7ciQ</recordid><startdate>20221004</startdate><enddate>20221004</enddate><creator>Merakeb, Lydia</creator><creator>Bennaamane, Soukaina</creator><creator>De Freitas, Jérémy</creator><creator>Clot, Eric</creator><creator>Mézailles, Nicolas</creator><creator>Robert, Marc</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7042-4106</orcidid></search><sort><creationdate>20221004</creationdate><title>Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex</title><author>Merakeb, Lydia ; Bennaamane, Soukaina ; De Freitas, Jérémy ; Clot, Eric ; Mézailles, Nicolas ; Robert, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2029-c3f29899a8b211840974894a31da5b382533c63474c4c5c93da35391a01fe7c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Chemistry</topic><topic>Coordination compounds</topic><topic>Dinitrogen Reductive Splitting</topic><topic>Electrochemical Reduction of N2</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Energy transition</topic><topic>Metal complexes</topic><topic>Molybdenum</topic><topic>Molybdenum Complex</topic><topic>Nitride Mo Complex</topic><topic>Nitrides</topic><topic>Nitrogen fixation</topic><topic>Nitrogenation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Room temperature</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merakeb, Lydia</creatorcontrib><creatorcontrib>Bennaamane, Soukaina</creatorcontrib><creatorcontrib>De Freitas, Jérémy</creatorcontrib><creatorcontrib>Clot, Eric</creatorcontrib><creatorcontrib>Mézailles, Nicolas</creatorcontrib><creatorcontrib>Robert, Marc</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merakeb, Lydia</au><au>Bennaamane, Soukaina</au><au>De Freitas, Jérémy</au><au>Clot, Eric</au><au>Mézailles, Nicolas</au><au>Robert, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex</atitle><jtitle>Angewandte Chemie</jtitle><date>2022-10-04</date><risdate>2022</risdate><volume>134</volume><issue>40</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Nitrogen reduction under mild conditions (room T and atmospheric P), using a non‐fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosphino complex [(PPP)MoI3], at room temperature and a moderately negative potential. A MoIV nitride species was generated, which is confirmed by electrochemistry and NMR studies. The reaction goes through two successive one electron reductions of the starting Mo species, coordination of a N2 molecule, and further splitting to a MoIV nitride complex. Preliminary DFT studies support the formation of a bridging MoIN2MoI dinitrogen dimer evolving to the Mo nitride via a low energy transition state. This example joins a short list of molecular complexes for N2 electrochemical reductive cleavage. It opens a door to electrochemical proton‐coupled electron transfer (PCET) conversion studies of N2 to NH3.
N2 splitting is achieved with a simple Mo complex at a carbon electrode. Controlled reduction (a 3 electron transfer process) at −1.4 V (vs. SCE) and ambient conditions (room T and atmospheric P) afforded a Mo nitride complex in 30 % yield. DFT studies support the transient formation of a MoI−N2−MoI bridging dimer.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202209899</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7042-4106</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2022-10, Vol.134 (40), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2717885211 |
source | Wiley Online Library All Journals |
subjects | Ammonia Chemistry Coordination compounds Dinitrogen Reductive Splitting Electrochemical Reduction of N2 Electrochemistry Electron transfer Energy transition Metal complexes Molybdenum Molybdenum Complex Nitride Mo Complex Nitrides Nitrogen fixation Nitrogenation NMR Nuclear magnetic resonance Room temperature Splitting |
title | Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Electrochemical%20Reductive%20Splitting%20of%20Dinitrogen%20with%20a%20Molybdenum%20Complex&rft.jtitle=Angewandte%20Chemie&rft.au=Merakeb,%20Lydia&rft.date=2022-10-04&rft.volume=134&rft.issue=40&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202209899&rft_dat=%3Cproquest_cross%3E2717885211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717885211&rft_id=info:pmid/&rfr_iscdi=true |