Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex

Nitrogen reduction under mild conditions (room T and atmospheric P), using a non‐fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2022-10, Vol.134 (40), p.n/a
Hauptverfasser: Merakeb, Lydia, Bennaamane, Soukaina, De Freitas, Jérémy, Clot, Eric, Mézailles, Nicolas, Robert, Marc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 40
container_start_page
container_title Angewandte Chemie
container_volume 134
creator Merakeb, Lydia
Bennaamane, Soukaina
De Freitas, Jérémy
Clot, Eric
Mézailles, Nicolas
Robert, Marc
description Nitrogen reduction under mild conditions (room T and atmospheric P), using a non‐fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosphino complex [(PPP)MoI3], at room temperature and a moderately negative potential. A MoIV nitride species was generated, which is confirmed by electrochemistry and NMR studies. The reaction goes through two successive one electron reductions of the starting Mo species, coordination of a N2 molecule, and further splitting to a MoIV nitride complex. Preliminary DFT studies support the formation of a bridging MoIN2MoI dinitrogen dimer evolving to the Mo nitride via a low energy transition state. This example joins a short list of molecular complexes for N2 electrochemical reductive cleavage. It opens a door to electrochemical proton‐coupled electron transfer (PCET) conversion studies of N2 to NH3. N2 splitting is achieved with a simple Mo complex at a carbon electrode. Controlled reduction (a 3 electron transfer process) at −1.4 V (vs. SCE) and ambient conditions (room T and atmospheric P) afforded a Mo nitride complex in 30 % yield. DFT studies support the transient formation of a MoI−N2−MoI bridging dimer.
doi_str_mv 10.1002/ange.202209899
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2717885211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717885211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2029-c3f29899a8b211840974894a31da5b382533c63474c4c5c93da35391a01fe7c43</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EEqWwMltiTvFXanusSilIBSSgs-U6TuvKiYOTUPrvcVUEI9N7w7n3PR0ArjEaYYTIra7XdkQQIUgKKU_AAOcEZ5Tn_BQMEGIsE4TJc3DRtluE0JhwOQDLp-Ct6b2OcJaWLgazsZUz2sNXW_Smc58WvjXedZ2r1zCU8M7VLmFrW8Od6zZQw1SxXxW27is4DVXj7dclOCu1b-3VzxyC5f3sffqQLV7mj9PJIjPpT5kZWpLDr1qsCMaCIcmZkExTXOh8RQXJKTVjyjgzzORG0kLTnEqsES4tN4wOwc2xt4nho7dtp7ahj3U6qQjHXIhkACdqdKRMDG0bbama6Cod9wojdVCnDurUr7oUkMfAznm7_4dWk-f57C_7DdE7ciQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717885211</pqid></control><display><type>article</type><title>Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex</title><source>Wiley Online Library All Journals</source><creator>Merakeb, Lydia ; Bennaamane, Soukaina ; De Freitas, Jérémy ; Clot, Eric ; Mézailles, Nicolas ; Robert, Marc</creator><creatorcontrib>Merakeb, Lydia ; Bennaamane, Soukaina ; De Freitas, Jérémy ; Clot, Eric ; Mézailles, Nicolas ; Robert, Marc</creatorcontrib><description>Nitrogen reduction under mild conditions (room T and atmospheric P), using a non‐fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosphino complex [(PPP)MoI3], at room temperature and a moderately negative potential. A MoIV nitride species was generated, which is confirmed by electrochemistry and NMR studies. The reaction goes through two successive one electron reductions of the starting Mo species, coordination of a N2 molecule, and further splitting to a MoIV nitride complex. Preliminary DFT studies support the formation of a bridging MoIN2MoI dinitrogen dimer evolving to the Mo nitride via a low energy transition state. This example joins a short list of molecular complexes for N2 electrochemical reductive cleavage. It opens a door to electrochemical proton‐coupled electron transfer (PCET) conversion studies of N2 to NH3. N2 splitting is achieved with a simple Mo complex at a carbon electrode. Controlled reduction (a 3 electron transfer process) at −1.4 V (vs. SCE) and ambient conditions (room T and atmospheric P) afforded a Mo nitride complex in 30 % yield. DFT studies support the transient formation of a MoI−N2−MoI bridging dimer.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202209899</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Ammonia ; Chemistry ; Coordination compounds ; Dinitrogen Reductive Splitting ; Electrochemical Reduction of N2 ; Electrochemistry ; Electron transfer ; Energy transition ; Metal complexes ; Molybdenum ; Molybdenum Complex ; Nitride Mo Complex ; Nitrides ; Nitrogen fixation ; Nitrogenation ; NMR ; Nuclear magnetic resonance ; Room temperature ; Splitting</subject><ispartof>Angewandte Chemie, 2022-10, Vol.134 (40), p.n/a</ispartof><rights>2022 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2029-c3f29899a8b211840974894a31da5b382533c63474c4c5c93da35391a01fe7c43</citedby><cites>FETCH-LOGICAL-c2029-c3f29899a8b211840974894a31da5b382533c63474c4c5c93da35391a01fe7c43</cites><orcidid>0000-0001-7042-4106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202209899$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202209899$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Merakeb, Lydia</creatorcontrib><creatorcontrib>Bennaamane, Soukaina</creatorcontrib><creatorcontrib>De Freitas, Jérémy</creatorcontrib><creatorcontrib>Clot, Eric</creatorcontrib><creatorcontrib>Mézailles, Nicolas</creatorcontrib><creatorcontrib>Robert, Marc</creatorcontrib><title>Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex</title><title>Angewandte Chemie</title><description>Nitrogen reduction under mild conditions (room T and atmospheric P), using a non‐fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosphino complex [(PPP)MoI3], at room temperature and a moderately negative potential. A MoIV nitride species was generated, which is confirmed by electrochemistry and NMR studies. The reaction goes through two successive one electron reductions of the starting Mo species, coordination of a N2 molecule, and further splitting to a MoIV nitride complex. Preliminary DFT studies support the formation of a bridging MoIN2MoI dinitrogen dimer evolving to the Mo nitride via a low energy transition state. This example joins a short list of molecular complexes for N2 electrochemical reductive cleavage. It opens a door to electrochemical proton‐coupled electron transfer (PCET) conversion studies of N2 to NH3. N2 splitting is achieved with a simple Mo complex at a carbon electrode. Controlled reduction (a 3 electron transfer process) at −1.4 V (vs. SCE) and ambient conditions (room T and atmospheric P) afforded a Mo nitride complex in 30 % yield. DFT studies support the transient formation of a MoI−N2−MoI bridging dimer.</description><subject>Ammonia</subject><subject>Chemistry</subject><subject>Coordination compounds</subject><subject>Dinitrogen Reductive Splitting</subject><subject>Electrochemical Reduction of N2</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Energy transition</subject><subject>Metal complexes</subject><subject>Molybdenum</subject><subject>Molybdenum Complex</subject><subject>Nitride Mo Complex</subject><subject>Nitrides</subject><subject>Nitrogen fixation</subject><subject>Nitrogenation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Room temperature</subject><subject>Splitting</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD1PwzAURS0EEqWwMltiTvFXanusSilIBSSgs-U6TuvKiYOTUPrvcVUEI9N7w7n3PR0ArjEaYYTIra7XdkQQIUgKKU_AAOcEZ5Tn_BQMEGIsE4TJc3DRtluE0JhwOQDLp-Ct6b2OcJaWLgazsZUz2sNXW_Smc58WvjXedZ2r1zCU8M7VLmFrW8Od6zZQw1SxXxW27is4DVXj7dclOCu1b-3VzxyC5f3sffqQLV7mj9PJIjPpT5kZWpLDr1qsCMaCIcmZkExTXOh8RQXJKTVjyjgzzORG0kLTnEqsES4tN4wOwc2xt4nho7dtp7ahj3U6qQjHXIhkACdqdKRMDG0bbama6Cod9wojdVCnDurUr7oUkMfAznm7_4dWk-f57C_7DdE7ciQ</recordid><startdate>20221004</startdate><enddate>20221004</enddate><creator>Merakeb, Lydia</creator><creator>Bennaamane, Soukaina</creator><creator>De Freitas, Jérémy</creator><creator>Clot, Eric</creator><creator>Mézailles, Nicolas</creator><creator>Robert, Marc</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7042-4106</orcidid></search><sort><creationdate>20221004</creationdate><title>Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex</title><author>Merakeb, Lydia ; Bennaamane, Soukaina ; De Freitas, Jérémy ; Clot, Eric ; Mézailles, Nicolas ; Robert, Marc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2029-c3f29899a8b211840974894a31da5b382533c63474c4c5c93da35391a01fe7c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ammonia</topic><topic>Chemistry</topic><topic>Coordination compounds</topic><topic>Dinitrogen Reductive Splitting</topic><topic>Electrochemical Reduction of N2</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Energy transition</topic><topic>Metal complexes</topic><topic>Molybdenum</topic><topic>Molybdenum Complex</topic><topic>Nitride Mo Complex</topic><topic>Nitrides</topic><topic>Nitrogen fixation</topic><topic>Nitrogenation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Room temperature</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merakeb, Lydia</creatorcontrib><creatorcontrib>Bennaamane, Soukaina</creatorcontrib><creatorcontrib>De Freitas, Jérémy</creatorcontrib><creatorcontrib>Clot, Eric</creatorcontrib><creatorcontrib>Mézailles, Nicolas</creatorcontrib><creatorcontrib>Robert, Marc</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merakeb, Lydia</au><au>Bennaamane, Soukaina</au><au>De Freitas, Jérémy</au><au>Clot, Eric</au><au>Mézailles, Nicolas</au><au>Robert, Marc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex</atitle><jtitle>Angewandte Chemie</jtitle><date>2022-10-04</date><risdate>2022</risdate><volume>134</volume><issue>40</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Nitrogen reduction under mild conditions (room T and atmospheric P), using a non‐fossil source of hydrogen remains a challenge. Molecular metal complexes, notably Mo based, have recently been shown to be active for such nitrogen fixation. We report electrochemical N2 splitting with a MoIII triphosphino complex [(PPP)MoI3], at room temperature and a moderately negative potential. A MoIV nitride species was generated, which is confirmed by electrochemistry and NMR studies. The reaction goes through two successive one electron reductions of the starting Mo species, coordination of a N2 molecule, and further splitting to a MoIV nitride complex. Preliminary DFT studies support the formation of a bridging MoIN2MoI dinitrogen dimer evolving to the Mo nitride via a low energy transition state. This example joins a short list of molecular complexes for N2 electrochemical reductive cleavage. It opens a door to electrochemical proton‐coupled electron transfer (PCET) conversion studies of N2 to NH3. N2 splitting is achieved with a simple Mo complex at a carbon electrode. Controlled reduction (a 3 electron transfer process) at −1.4 V (vs. SCE) and ambient conditions (room T and atmospheric P) afforded a Mo nitride complex in 30 % yield. DFT studies support the transient formation of a MoI−N2−MoI bridging dimer.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202209899</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7042-4106</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2022-10, Vol.134 (40), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2717885211
source Wiley Online Library All Journals
subjects Ammonia
Chemistry
Coordination compounds
Dinitrogen Reductive Splitting
Electrochemical Reduction of N2
Electrochemistry
Electron transfer
Energy transition
Metal complexes
Molybdenum
Molybdenum Complex
Nitride Mo Complex
Nitrides
Nitrogen fixation
Nitrogenation
NMR
Nuclear magnetic resonance
Room temperature
Splitting
title Molecular Electrochemical Reductive Splitting of Dinitrogen with a Molybdenum Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Electrochemical%20Reductive%20Splitting%20of%20Dinitrogen%20with%20a%20Molybdenum%20Complex&rft.jtitle=Angewandte%20Chemie&rft.au=Merakeb,%20Lydia&rft.date=2022-10-04&rft.volume=134&rft.issue=40&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202209899&rft_dat=%3Cproquest_cross%3E2717885211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717885211&rft_id=info:pmid/&rfr_iscdi=true