MOF-derived bimetallic core–shell catalyst HZSM-5@ZrO2–In2O3: high CO2 conversion in reverse water gas shift reaction
The bicomponent core–shell catalyst HZSM-5@ZrO2–In2O3 was synthesized via the decomposition of In(NO3)3/HZSM-5@UIO-66, which was obtained by impregnating HZSM-5@UIO-66 with In(NO3)3 solution. The bimetallic oxide particles of ZrO2–In2O3 were formed through the simultaneous decomposition of UIO-66 an...
Gespeichert in:
Veröffentlicht in: | Materials chemistry frontiers 2022-09, Vol.6 (19), p.2826-2834 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2834 |
---|---|
container_issue | 19 |
container_start_page | 2826 |
container_title | Materials chemistry frontiers |
container_volume | 6 |
creator | Fang, Huimin Zhao, Guofeng Cheng, Denghui Liu, Jichang Dengpeng Lan Jiang, Qi Liu, Xuqiang Ge, Jianping Xu, Zhenliang Xu, Haitao |
description | The bicomponent core–shell catalyst HZSM-5@ZrO2–In2O3 was synthesized via the decomposition of In(NO3)3/HZSM-5@UIO-66, which was obtained by impregnating HZSM-5@UIO-66 with In(NO3)3 solution. The bimetallic oxide particles of ZrO2–In2O3 were formed through the simultaneous decomposition of UIO-66 and In(NO3)3, and were anchored to the surface of the HZSM-5 core. The HZSM-5@ZrO2–In2O3 catalyst exhibited 31.1% CO2 conversion with 96.3% CO selectivity at 400 °C for the reverse water gas shift reaction. |
doi_str_mv | 10.1039/d2qm00307d |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2717675135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717675135</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-19ce318ac2b33c2d64cae2220d34c1d2b3c057dc3e966ae7c56195f1397e3a3a3</originalsourceid><addsrcrecordid>eNotjcFOAjEQhhsTEwly8QmaeF5tO3TLetIQERLIHtQLF1LaWbZk2YW2YLj5Dr6hT2KNZg6T-f75_5-QG87uOIPi3orDjjFgyl6QnmBSZFyCuiKDELaMMa6UAMZ75LwoJ5lF705o6drtMOqmcYaazuP351eosWmo0YmeQ6TT5esik49LX4okzlpRwgOt3aam41IkT3tCH1zXUtdSj78H0g8d0dONDjTUroqJaxPTzzW5rHQTcPC_--R98vw2nmbz8mU2fppnez6CmPHCIPCRNmINYITNh0ajEIJZGBpuEzVMKmsAizzXqIzMeSErDoVC0Gn65PYvd--7wxFDXG27o29T5UoornIlOUj4AazbXoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717675135</pqid></control><display><type>article</type><title>MOF-derived bimetallic core–shell catalyst HZSM-5@ZrO2–In2O3: high CO2 conversion in reverse water gas shift reaction</title><source>Royal Society Of Chemistry Journals</source><creator>Fang, Huimin ; Zhao, Guofeng ; Cheng, Denghui ; Liu, Jichang ; Dengpeng Lan ; Jiang, Qi ; Liu, Xuqiang ; Ge, Jianping ; Xu, Zhenliang ; Xu, Haitao</creator><creatorcontrib>Fang, Huimin ; Zhao, Guofeng ; Cheng, Denghui ; Liu, Jichang ; Dengpeng Lan ; Jiang, Qi ; Liu, Xuqiang ; Ge, Jianping ; Xu, Zhenliang ; Xu, Haitao</creatorcontrib><description>The bicomponent core–shell catalyst HZSM-5@ZrO2–In2O3 was synthesized via the decomposition of In(NO3)3/HZSM-5@UIO-66, which was obtained by impregnating HZSM-5@UIO-66 with In(NO3)3 solution. The bimetallic oxide particles of ZrO2–In2O3 were formed through the simultaneous decomposition of UIO-66 and In(NO3)3, and were anchored to the surface of the HZSM-5 core. The HZSM-5@ZrO2–In2O3 catalyst exhibited 31.1% CO2 conversion with 96.3% CO selectivity at 400 °C for the reverse water gas shift reaction.</description><identifier>EISSN: 2052-1537</identifier><identifier>DOI: 10.1039/d2qm00307d</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Bimetals ; Carbon dioxide ; Catalysts ; Chemical synthesis ; Conversion ; Decomposition ; Impregnation ; Indium oxides ; Selectivity ; Shift reaction ; Water gas ; Zirconium dioxide</subject><ispartof>Materials chemistry frontiers, 2022-09, Vol.6 (19), p.2826-2834</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fang, Huimin</creatorcontrib><creatorcontrib>Zhao, Guofeng</creatorcontrib><creatorcontrib>Cheng, Denghui</creatorcontrib><creatorcontrib>Liu, Jichang</creatorcontrib><creatorcontrib>Dengpeng Lan</creatorcontrib><creatorcontrib>Jiang, Qi</creatorcontrib><creatorcontrib>Liu, Xuqiang</creatorcontrib><creatorcontrib>Ge, Jianping</creatorcontrib><creatorcontrib>Xu, Zhenliang</creatorcontrib><creatorcontrib>Xu, Haitao</creatorcontrib><title>MOF-derived bimetallic core–shell catalyst HZSM-5@ZrO2–In2O3: high CO2 conversion in reverse water gas shift reaction</title><title>Materials chemistry frontiers</title><description>The bicomponent core–shell catalyst HZSM-5@ZrO2–In2O3 was synthesized via the decomposition of In(NO3)3/HZSM-5@UIO-66, which was obtained by impregnating HZSM-5@UIO-66 with In(NO3)3 solution. The bimetallic oxide particles of ZrO2–In2O3 were formed through the simultaneous decomposition of UIO-66 and In(NO3)3, and were anchored to the surface of the HZSM-5 core. The HZSM-5@ZrO2–In2O3 catalyst exhibited 31.1% CO2 conversion with 96.3% CO selectivity at 400 °C for the reverse water gas shift reaction.</description><subject>Bimetals</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Conversion</subject><subject>Decomposition</subject><subject>Impregnation</subject><subject>Indium oxides</subject><subject>Selectivity</subject><subject>Shift reaction</subject><subject>Water gas</subject><subject>Zirconium dioxide</subject><issn>2052-1537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjcFOAjEQhhsTEwly8QmaeF5tO3TLetIQERLIHtQLF1LaWbZk2YW2YLj5Dr6hT2KNZg6T-f75_5-QG87uOIPi3orDjjFgyl6QnmBSZFyCuiKDELaMMa6UAMZ75LwoJ5lF705o6drtMOqmcYaazuP351eosWmo0YmeQ6TT5esik49LX4okzlpRwgOt3aam41IkT3tCH1zXUtdSj78H0g8d0dONDjTUroqJaxPTzzW5rHQTcPC_--R98vw2nmbz8mU2fppnez6CmPHCIPCRNmINYITNh0ajEIJZGBpuEzVMKmsAizzXqIzMeSErDoVC0Gn65PYvd--7wxFDXG27o29T5UoornIlOUj4AazbXoA</recordid><startdate>20220926</startdate><enddate>20220926</enddate><creator>Fang, Huimin</creator><creator>Zhao, Guofeng</creator><creator>Cheng, Denghui</creator><creator>Liu, Jichang</creator><creator>Dengpeng Lan</creator><creator>Jiang, Qi</creator><creator>Liu, Xuqiang</creator><creator>Ge, Jianping</creator><creator>Xu, Zhenliang</creator><creator>Xu, Haitao</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20220926</creationdate><title>MOF-derived bimetallic core–shell catalyst HZSM-5@ZrO2–In2O3: high CO2 conversion in reverse water gas shift reaction</title><author>Fang, Huimin ; Zhao, Guofeng ; Cheng, Denghui ; Liu, Jichang ; Dengpeng Lan ; Jiang, Qi ; Liu, Xuqiang ; Ge, Jianping ; Xu, Zhenliang ; Xu, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-19ce318ac2b33c2d64cae2220d34c1d2b3c057dc3e966ae7c56195f1397e3a3a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bimetals</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Conversion</topic><topic>Decomposition</topic><topic>Impregnation</topic><topic>Indium oxides</topic><topic>Selectivity</topic><topic>Shift reaction</topic><topic>Water gas</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Huimin</creatorcontrib><creatorcontrib>Zhao, Guofeng</creatorcontrib><creatorcontrib>Cheng, Denghui</creatorcontrib><creatorcontrib>Liu, Jichang</creatorcontrib><creatorcontrib>Dengpeng Lan</creatorcontrib><creatorcontrib>Jiang, Qi</creatorcontrib><creatorcontrib>Liu, Xuqiang</creatorcontrib><creatorcontrib>Ge, Jianping</creatorcontrib><creatorcontrib>Xu, Zhenliang</creatorcontrib><creatorcontrib>Xu, Haitao</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials chemistry frontiers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Huimin</au><au>Zhao, Guofeng</au><au>Cheng, Denghui</au><au>Liu, Jichang</au><au>Dengpeng Lan</au><au>Jiang, Qi</au><au>Liu, Xuqiang</au><au>Ge, Jianping</au><au>Xu, Zhenliang</au><au>Xu, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MOF-derived bimetallic core–shell catalyst HZSM-5@ZrO2–In2O3: high CO2 conversion in reverse water gas shift reaction</atitle><jtitle>Materials chemistry frontiers</jtitle><date>2022-09-26</date><risdate>2022</risdate><volume>6</volume><issue>19</issue><spage>2826</spage><epage>2834</epage><pages>2826-2834</pages><eissn>2052-1537</eissn><abstract>The bicomponent core–shell catalyst HZSM-5@ZrO2–In2O3 was synthesized via the decomposition of In(NO3)3/HZSM-5@UIO-66, which was obtained by impregnating HZSM-5@UIO-66 with In(NO3)3 solution. The bimetallic oxide particles of ZrO2–In2O3 were formed through the simultaneous decomposition of UIO-66 and In(NO3)3, and were anchored to the surface of the HZSM-5 core. The HZSM-5@ZrO2–In2O3 catalyst exhibited 31.1% CO2 conversion with 96.3% CO selectivity at 400 °C for the reverse water gas shift reaction.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2qm00307d</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2052-1537 |
ispartof | Materials chemistry frontiers, 2022-09, Vol.6 (19), p.2826-2834 |
issn | 2052-1537 |
language | eng |
recordid | cdi_proquest_journals_2717675135 |
source | Royal Society Of Chemistry Journals |
subjects | Bimetals Carbon dioxide Catalysts Chemical synthesis Conversion Decomposition Impregnation Indium oxides Selectivity Shift reaction Water gas Zirconium dioxide |
title | MOF-derived bimetallic core–shell catalyst HZSM-5@ZrO2–In2O3: high CO2 conversion in reverse water gas shift reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A24%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MOF-derived%20bimetallic%20core%E2%80%93shell%20catalyst%20HZSM-5@ZrO2%E2%80%93In2O3:%20high%20CO2%20conversion%20in%20reverse%20water%20gas%20shift%20reaction&rft.jtitle=Materials%20chemistry%20frontiers&rft.au=Fang,%20Huimin&rft.date=2022-09-26&rft.volume=6&rft.issue=19&rft.spage=2826&rft.epage=2834&rft.pages=2826-2834&rft.eissn=2052-1537&rft_id=info:doi/10.1039/d2qm00307d&rft_dat=%3Cproquest%3E2717675135%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717675135&rft_id=info:pmid/&rfr_iscdi=true |