Research on Vessel Speed Heading and Collision Detection Method Based on AIS Data
In order to better predict the sailing information data of fishing boats, make accurate prediction and spacing budget for the sailing status of ships, achieve more accurate coordination and early warning in advance, and ensure the safety of fishing boats’ laneway, the essay combined the kinematics e...
Gespeichert in:
Veröffentlicht in: | Mobile information systems 2022-09, Vol.2022, p.1-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Mobile information systems |
container_volume | 2022 |
creator | Wang, Guoqing Fan, En Zheng, Guohua Li, Kexiang Huang, Haiguang |
description | In order to better predict the sailing information data of fishing boats, make accurate prediction and spacing budget for the sailing status of ships, achieve more accurate coordination and early warning in advance, and ensure the safety of fishing boats’ laneway, the essay combined the kinematics equation and artificial neural network model to adapt to the traffic situation of fishing boats in the far sea. A course and collision test technique based on ship AIS data is proposed, and the course collision detection method of fishing boats is studied by means of actual ship beacon collision accident data. Through the practical test, taking the navigation mark 4560.117 as an example, under the detection track of the navigation mark field corresponding to R = 70, the two ships have the same track, thus verifying the practicality and feasibility of the ship navigation mark collision detection method. |
doi_str_mv | 10.1155/2022/7257075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2717517041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717517041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-563b331438cbaf55c084ed36cde64a42721668827565abb99aa282e52b3b0cd33</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqzR8Q8Khr87Gz2R5rq7ZQEa1KbyGbTO2WdXdNtoj_3pT27GnegYcZeAm55OyWc4CBYEIMlADFFByRHs8VJEMGy-OYQaUJ42p5Ss5C2DCWMQmqR15eMaDxdk2bmn5gCFjRRYvo6BSNK-tPampHx01VlaGMZIId2m6XnrBbN47emRBx3EezBZ2YzpyTk5WpAl4cZp-8P9y_jafJ_PlxNh7NEyul6hLIZCElT2VuC7MCsCxP0cnMOsxSkwoleJbluVCQgSmK4dAYkQsEUciCWSdln1zt77a--d5i6PSm2fo6vtRCcQVcsZRHdbNX1jcheFzp1pdfxv9qzvSuNL0rTR9Ki_x6z9dl7cxP-b_-A5ygaXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717517041</pqid></control><display><type>article</type><title>Research on Vessel Speed Heading and Collision Detection Method Based on AIS Data</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Guoqing ; Fan, En ; Zheng, Guohua ; Li, Kexiang ; Huang, Haiguang</creator><contributor>Tang, Yajuan ; Yajuan Tang</contributor><creatorcontrib>Wang, Guoqing ; Fan, En ; Zheng, Guohua ; Li, Kexiang ; Huang, Haiguang ; Tang, Yajuan ; Yajuan Tang</creatorcontrib><description>In order to better predict the sailing information data of fishing boats, make accurate prediction and spacing budget for the sailing status of ships, achieve more accurate coordination and early warning in advance, and ensure the safety of fishing boats’ laneway, the essay combined the kinematics equation and artificial neural network model to adapt to the traffic situation of fishing boats in the far sea. A course and collision test technique based on ship AIS data is proposed, and the course collision detection method of fishing boats is studied by means of actual ship beacon collision accident data. Through the practical test, taking the navigation mark 4560.117 as an example, under the detection track of the navigation mark field corresponding to R = 70, the two ships have the same track, thus verifying the practicality and feasibility of the ship navigation mark collision detection method.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2022/7257075</identifier><language>eng</language><publisher>Amsterdam: Hindawi</publisher><subject>Accident data ; Accuracy ; Algorithms ; Artificial neural networks ; Clustering ; Collision dynamics ; Decision making ; Fishing ; Kinematics ; Navigation ; Sailing ; Shipping industry ; Ships ; Traffic congestion</subject><ispartof>Mobile information systems, 2022-09, Vol.2022, p.1-10</ispartof><rights>Copyright © 2022 Guoqing Wang et al.</rights><rights>Copyright © 2022 Guoqing Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-563b331438cbaf55c084ed36cde64a42721668827565abb99aa282e52b3b0cd33</citedby><cites>FETCH-LOGICAL-c337t-563b331438cbaf55c084ed36cde64a42721668827565abb99aa282e52b3b0cd33</cites><orcidid>0000-0002-1704-5745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Tang, Yajuan</contributor><contributor>Yajuan Tang</contributor><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Fan, En</creatorcontrib><creatorcontrib>Zheng, Guohua</creatorcontrib><creatorcontrib>Li, Kexiang</creatorcontrib><creatorcontrib>Huang, Haiguang</creatorcontrib><title>Research on Vessel Speed Heading and Collision Detection Method Based on AIS Data</title><title>Mobile information systems</title><description>In order to better predict the sailing information data of fishing boats, make accurate prediction and spacing budget for the sailing status of ships, achieve more accurate coordination and early warning in advance, and ensure the safety of fishing boats’ laneway, the essay combined the kinematics equation and artificial neural network model to adapt to the traffic situation of fishing boats in the far sea. A course and collision test technique based on ship AIS data is proposed, and the course collision detection method of fishing boats is studied by means of actual ship beacon collision accident data. Through the practical test, taking the navigation mark 4560.117 as an example, under the detection track of the navigation mark field corresponding to R = 70, the two ships have the same track, thus verifying the practicality and feasibility of the ship navigation mark collision detection method.</description><subject>Accident data</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>Collision dynamics</subject><subject>Decision making</subject><subject>Fishing</subject><subject>Kinematics</subject><subject>Navigation</subject><subject>Sailing</subject><subject>Shipping industry</subject><subject>Ships</subject><subject>Traffic congestion</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp90E1LAzEQBuAgCtbqzR8Q8Khr87Gz2R5rq7ZQEa1KbyGbTO2WdXdNtoj_3pT27GnegYcZeAm55OyWc4CBYEIMlADFFByRHs8VJEMGy-OYQaUJ42p5Ss5C2DCWMQmqR15eMaDxdk2bmn5gCFjRRYvo6BSNK-tPampHx01VlaGMZIId2m6XnrBbN47emRBx3EezBZ2YzpyTk5WpAl4cZp-8P9y_jafJ_PlxNh7NEyul6hLIZCElT2VuC7MCsCxP0cnMOsxSkwoleJbluVCQgSmK4dAYkQsEUciCWSdln1zt77a--d5i6PSm2fo6vtRCcQVcsZRHdbNX1jcheFzp1pdfxv9qzvSuNL0rTR9Ki_x6z9dl7cxP-b_-A5ygaXY</recordid><startdate>20220916</startdate><enddate>20220916</enddate><creator>Wang, Guoqing</creator><creator>Fan, En</creator><creator>Zheng, Guohua</creator><creator>Li, Kexiang</creator><creator>Huang, Haiguang</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1704-5745</orcidid></search><sort><creationdate>20220916</creationdate><title>Research on Vessel Speed Heading and Collision Detection Method Based on AIS Data</title><author>Wang, Guoqing ; Fan, En ; Zheng, Guohua ; Li, Kexiang ; Huang, Haiguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-563b331438cbaf55c084ed36cde64a42721668827565abb99aa282e52b3b0cd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accident data</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>Collision dynamics</topic><topic>Decision making</topic><topic>Fishing</topic><topic>Kinematics</topic><topic>Navigation</topic><topic>Sailing</topic><topic>Shipping industry</topic><topic>Ships</topic><topic>Traffic congestion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Fan, En</creatorcontrib><creatorcontrib>Zheng, Guohua</creatorcontrib><creatorcontrib>Li, Kexiang</creatorcontrib><creatorcontrib>Huang, Haiguang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guoqing</au><au>Fan, En</au><au>Zheng, Guohua</au><au>Li, Kexiang</au><au>Huang, Haiguang</au><au>Tang, Yajuan</au><au>Yajuan Tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Vessel Speed Heading and Collision Detection Method Based on AIS Data</atitle><jtitle>Mobile information systems</jtitle><date>2022-09-16</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>In order to better predict the sailing information data of fishing boats, make accurate prediction and spacing budget for the sailing status of ships, achieve more accurate coordination and early warning in advance, and ensure the safety of fishing boats’ laneway, the essay combined the kinematics equation and artificial neural network model to adapt to the traffic situation of fishing boats in the far sea. A course and collision test technique based on ship AIS data is proposed, and the course collision detection method of fishing boats is studied by means of actual ship beacon collision accident data. Through the practical test, taking the navigation mark 4560.117 as an example, under the detection track of the navigation mark field corresponding to R = 70, the two ships have the same track, thus verifying the practicality and feasibility of the ship navigation mark collision detection method.</abstract><cop>Amsterdam</cop><pub>Hindawi</pub><doi>10.1155/2022/7257075</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1704-5745</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-017X |
ispartof | Mobile information systems, 2022-09, Vol.2022, p.1-10 |
issn | 1574-017X 1875-905X |
language | eng |
recordid | cdi_proquest_journals_2717517041 |
source | Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accident data Accuracy Algorithms Artificial neural networks Clustering Collision dynamics Decision making Fishing Kinematics Navigation Sailing Shipping industry Ships Traffic congestion |
title | Research on Vessel Speed Heading and Collision Detection Method Based on AIS Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Vessel%20Speed%20Heading%20and%20Collision%20Detection%20Method%20Based%20on%20AIS%20Data&rft.jtitle=Mobile%20information%20systems&rft.au=Wang,%20Guoqing&rft.date=2022-09-16&rft.volume=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2022/7257075&rft_dat=%3Cproquest_cross%3E2717517041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717517041&rft_id=info:pmid/&rfr_iscdi=true |