Research on Vessel Speed Heading and Collision Detection Method Based on AIS Data

In order to better predict the sailing information data of fishing boats, make accurate prediction and spacing budget for the sailing status of ships, achieve more accurate coordination and early warning in advance, and ensure the safety of fishing boats’ laneway, the essay combined the kinematics e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile information systems 2022-09, Vol.2022, p.1-10
Hauptverfasser: Wang, Guoqing, Fan, En, Zheng, Guohua, Li, Kexiang, Huang, Haiguang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Mobile information systems
container_volume 2022
creator Wang, Guoqing
Fan, En
Zheng, Guohua
Li, Kexiang
Huang, Haiguang
description In order to better predict the sailing information data of fishing boats, make accurate prediction and spacing budget for the sailing status of ships, achieve more accurate coordination and early warning in advance, and ensure the safety of fishing boats’ laneway, the essay combined the kinematics equation and artificial neural network model to adapt to the traffic situation of fishing boats in the far sea. A course and collision test technique based on ship AIS data is proposed, and the course collision detection method of fishing boats is studied by means of actual ship beacon collision accident data. Through the practical test, taking the navigation mark 4560.117 as an example, under the detection track of the navigation mark field corresponding to R = 70, the two ships have the same track, thus verifying the practicality and feasibility of the ship navigation mark collision detection method.
doi_str_mv 10.1155/2022/7257075
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2717517041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717517041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-563b331438cbaf55c084ed36cde64a42721668827565abb99aa282e52b3b0cd33</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqzR8Q8Khr87Gz2R5rq7ZQEa1KbyGbTO2WdXdNtoj_3pT27GnegYcZeAm55OyWc4CBYEIMlADFFByRHs8VJEMGy-OYQaUJ42p5Ss5C2DCWMQmqR15eMaDxdk2bmn5gCFjRRYvo6BSNK-tPampHx01VlaGMZIId2m6XnrBbN47emRBx3EezBZ2YzpyTk5WpAl4cZp-8P9y_jafJ_PlxNh7NEyul6hLIZCElT2VuC7MCsCxP0cnMOsxSkwoleJbluVCQgSmK4dAYkQsEUciCWSdln1zt77a--d5i6PSm2fo6vtRCcQVcsZRHdbNX1jcheFzp1pdfxv9qzvSuNL0rTR9Ki_x6z9dl7cxP-b_-A5ygaXY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717517041</pqid></control><display><type>article</type><title>Research on Vessel Speed Heading and Collision Detection Method Based on AIS Data</title><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Wang, Guoqing ; Fan, En ; Zheng, Guohua ; Li, Kexiang ; Huang, Haiguang</creator><contributor>Tang, Yajuan ; Yajuan Tang</contributor><creatorcontrib>Wang, Guoqing ; Fan, En ; Zheng, Guohua ; Li, Kexiang ; Huang, Haiguang ; Tang, Yajuan ; Yajuan Tang</creatorcontrib><description>In order to better predict the sailing information data of fishing boats, make accurate prediction and spacing budget for the sailing status of ships, achieve more accurate coordination and early warning in advance, and ensure the safety of fishing boats’ laneway, the essay combined the kinematics equation and artificial neural network model to adapt to the traffic situation of fishing boats in the far sea. A course and collision test technique based on ship AIS data is proposed, and the course collision detection method of fishing boats is studied by means of actual ship beacon collision accident data. Through the practical test, taking the navigation mark 4560.117 as an example, under the detection track of the navigation mark field corresponding to R = 70, the two ships have the same track, thus verifying the practicality and feasibility of the ship navigation mark collision detection method.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2022/7257075</identifier><language>eng</language><publisher>Amsterdam: Hindawi</publisher><subject>Accident data ; Accuracy ; Algorithms ; Artificial neural networks ; Clustering ; Collision dynamics ; Decision making ; Fishing ; Kinematics ; Navigation ; Sailing ; Shipping industry ; Ships ; Traffic congestion</subject><ispartof>Mobile information systems, 2022-09, Vol.2022, p.1-10</ispartof><rights>Copyright © 2022 Guoqing Wang et al.</rights><rights>Copyright © 2022 Guoqing Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-563b331438cbaf55c084ed36cde64a42721668827565abb99aa282e52b3b0cd33</citedby><cites>FETCH-LOGICAL-c337t-563b331438cbaf55c084ed36cde64a42721668827565abb99aa282e52b3b0cd33</cites><orcidid>0000-0002-1704-5745</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Tang, Yajuan</contributor><contributor>Yajuan Tang</contributor><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Fan, En</creatorcontrib><creatorcontrib>Zheng, Guohua</creatorcontrib><creatorcontrib>Li, Kexiang</creatorcontrib><creatorcontrib>Huang, Haiguang</creatorcontrib><title>Research on Vessel Speed Heading and Collision Detection Method Based on AIS Data</title><title>Mobile information systems</title><description>In order to better predict the sailing information data of fishing boats, make accurate prediction and spacing budget for the sailing status of ships, achieve more accurate coordination and early warning in advance, and ensure the safety of fishing boats’ laneway, the essay combined the kinematics equation and artificial neural network model to adapt to the traffic situation of fishing boats in the far sea. A course and collision test technique based on ship AIS data is proposed, and the course collision detection method of fishing boats is studied by means of actual ship beacon collision accident data. Through the practical test, taking the navigation mark 4560.117 as an example, under the detection track of the navigation mark field corresponding to R = 70, the two ships have the same track, thus verifying the practicality and feasibility of the ship navigation mark collision detection method.</description><subject>Accident data</subject><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>Collision dynamics</subject><subject>Decision making</subject><subject>Fishing</subject><subject>Kinematics</subject><subject>Navigation</subject><subject>Sailing</subject><subject>Shipping industry</subject><subject>Ships</subject><subject>Traffic congestion</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp90E1LAzEQBuAgCtbqzR8Q8Khr87Gz2R5rq7ZQEa1KbyGbTO2WdXdNtoj_3pT27GnegYcZeAm55OyWc4CBYEIMlADFFByRHs8VJEMGy-OYQaUJ42p5Ss5C2DCWMQmqR15eMaDxdk2bmn5gCFjRRYvo6BSNK-tPampHx01VlaGMZIId2m6XnrBbN47emRBx3EezBZ2YzpyTk5WpAl4cZp-8P9y_jafJ_PlxNh7NEyul6hLIZCElT2VuC7MCsCxP0cnMOsxSkwoleJbluVCQgSmK4dAYkQsEUciCWSdln1zt77a--d5i6PSm2fo6vtRCcQVcsZRHdbNX1jcheFzp1pdfxv9qzvSuNL0rTR9Ki_x6z9dl7cxP-b_-A5ygaXY</recordid><startdate>20220916</startdate><enddate>20220916</enddate><creator>Wang, Guoqing</creator><creator>Fan, En</creator><creator>Zheng, Guohua</creator><creator>Li, Kexiang</creator><creator>Huang, Haiguang</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1704-5745</orcidid></search><sort><creationdate>20220916</creationdate><title>Research on Vessel Speed Heading and Collision Detection Method Based on AIS Data</title><author>Wang, Guoqing ; Fan, En ; Zheng, Guohua ; Li, Kexiang ; Huang, Haiguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-563b331438cbaf55c084ed36cde64a42721668827565abb99aa282e52b3b0cd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accident data</topic><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>Collision dynamics</topic><topic>Decision making</topic><topic>Fishing</topic><topic>Kinematics</topic><topic>Navigation</topic><topic>Sailing</topic><topic>Shipping industry</topic><topic>Ships</topic><topic>Traffic congestion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Guoqing</creatorcontrib><creatorcontrib>Fan, En</creatorcontrib><creatorcontrib>Zheng, Guohua</creatorcontrib><creatorcontrib>Li, Kexiang</creatorcontrib><creatorcontrib>Huang, Haiguang</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Guoqing</au><au>Fan, En</au><au>Zheng, Guohua</au><au>Li, Kexiang</au><au>Huang, Haiguang</au><au>Tang, Yajuan</au><au>Yajuan Tang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Vessel Speed Heading and Collision Detection Method Based on AIS Data</atitle><jtitle>Mobile information systems</jtitle><date>2022-09-16</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>In order to better predict the sailing information data of fishing boats, make accurate prediction and spacing budget for the sailing status of ships, achieve more accurate coordination and early warning in advance, and ensure the safety of fishing boats’ laneway, the essay combined the kinematics equation and artificial neural network model to adapt to the traffic situation of fishing boats in the far sea. A course and collision test technique based on ship AIS data is proposed, and the course collision detection method of fishing boats is studied by means of actual ship beacon collision accident data. Through the practical test, taking the navigation mark 4560.117 as an example, under the detection track of the navigation mark field corresponding to R = 70, the two ships have the same track, thus verifying the practicality and feasibility of the ship navigation mark collision detection method.</abstract><cop>Amsterdam</cop><pub>Hindawi</pub><doi>10.1155/2022/7257075</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-1704-5745</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-017X
ispartof Mobile information systems, 2022-09, Vol.2022, p.1-10
issn 1574-017X
1875-905X
language eng
recordid cdi_proquest_journals_2717517041
source Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Accident data
Accuracy
Algorithms
Artificial neural networks
Clustering
Collision dynamics
Decision making
Fishing
Kinematics
Navigation
Sailing
Shipping industry
Ships
Traffic congestion
title Research on Vessel Speed Heading and Collision Detection Method Based on AIS Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A55%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Vessel%20Speed%20Heading%20and%20Collision%20Detection%20Method%20Based%20on%20AIS%20Data&rft.jtitle=Mobile%20information%20systems&rft.au=Wang,%20Guoqing&rft.date=2022-09-16&rft.volume=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2022/7257075&rft_dat=%3Cproquest_cross%3E2717517041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717517041&rft_id=info:pmid/&rfr_iscdi=true