A study on robustness of malware detection model
In recent years, machine learning–based techniques are used to prevent cyberattacks caused by malware, and special attention is paid to the risks posed by such systems. However, there are relatively few studies on adversarial attacks on machine learning–based malware detection model using portable e...
Gespeichert in:
Veröffentlicht in: | Annales des télécommunications 2022-10, Vol.77 (9-10), p.663-675 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 675 |
---|---|
container_issue | 9-10 |
container_start_page | 663 |
container_title | Annales des télécommunications |
container_volume | 77 |
creator | Zheng, Wanjia Omote, Kazumasa |
description | In recent years, machine learning–based techniques are used to prevent cyberattacks caused by malware, and special attention is paid to the risks posed by such systems. However, there are relatively few studies on adversarial attacks on machine learning–based malware detection model using portable execution (PE) surface information and even less study from a defender’s perspective. In this study, we focus on malware detection field and treat the aforementioned issue from the perspectives of both attackers and defenders; subsequently, we propose a novel black-box adversarial attack method, named
Image_Resource
attack, and a robust malware detection model, respectively, using dimensionality reduction and machine learning techniques. The robustness of the proposed model is evaluated using PE surface information obtained from the FFRI Dataset 2018. During robustness evaluation, distances (e.g., the Euclidean distance) between the malware and benign files are measured, and the effectiveness of
Image_Resource
attack is estimated. Thus, we establish the effectiveness and superiority of the proposed model in terms of detection accuracy and robustness. |
doi_str_mv | 10.1007/s12243-021-00899-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2717466723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717466723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-57b7f17cbb91b3306bb5d1eaf707e3d1cab015ced72a6fff036f7f4f654c38af3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEf_gKuC6-hL0uS1y2HwCwbc6DokaSIzTJsxaZGZX2-1gjtXb3HvuQ8OIdcMbhkA3mXGeSUocEYB6qahxxNSsEbWtBGNPCUFAAhaiQrPyUXOWwAFKGVBYFnmYWwPZezLFO2Yh97nXMZQdmb3aZIvWz94N2ymvIut312Ss2B22V_93gV5e7h_XT3R9cvj82q5po4jDFSixcDQWdswKwQoa2XLvAkI6EXLnLHApPMtcqNCCCBUwFAFJSsnahPEgtzMu_sUP0afB72NY-qnl5ojw0op5GJq8bnlUsw5-aD3adOZdNAM9LcZPZvRkxn9Y0YfJ0jMUJ7K_btPf9P_UF8CvGbe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717466723</pqid></control><display><type>article</type><title>A study on robustness of malware detection model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zheng, Wanjia ; Omote, Kazumasa</creator><creatorcontrib>Zheng, Wanjia ; Omote, Kazumasa</creatorcontrib><description>In recent years, machine learning–based techniques are used to prevent cyberattacks caused by malware, and special attention is paid to the risks posed by such systems. However, there are relatively few studies on adversarial attacks on machine learning–based malware detection model using portable execution (PE) surface information and even less study from a defender’s perspective. In this study, we focus on malware detection field and treat the aforementioned issue from the perspectives of both attackers and defenders; subsequently, we propose a novel black-box adversarial attack method, named
Image_Resource
attack, and a robust malware detection model, respectively, using dimensionality reduction and machine learning techniques. The robustness of the proposed model is evaluated using PE surface information obtained from the FFRI Dataset 2018. During robustness evaluation, distances (e.g., the Euclidean distance) between the malware and benign files are measured, and the effectiveness of
Image_Resource
attack is estimated. Thus, we establish the effectiveness and superiority of the proposed model in terms of detection accuracy and robustness.</description><identifier>ISSN: 0003-4347</identifier><identifier>EISSN: 1958-9395</identifier><identifier>DOI: 10.1007/s12243-021-00899-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Circuits ; Communications Engineering ; Computer Communication Networks ; Effectiveness ; Engineering ; Euclidean geometry ; Evaluation ; Information and Communication ; Information Systems and Communication Service ; Machine learning ; Malware ; Networks ; R & D/Technology Policy ; Robustness ; Signal,Image and Speech Processing</subject><ispartof>Annales des télécommunications, 2022-10, Vol.77 (9-10), p.663-675</ispartof><rights>Institut Mines-Télécom and Springer Nature Switzerland AG 2021</rights><rights>Institut Mines-Télécom and Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-57b7f17cbb91b3306bb5d1eaf707e3d1cab015ced72a6fff036f7f4f654c38af3</cites><orcidid>0000-0002-8768-8033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12243-021-00899-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12243-021-00899-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zheng, Wanjia</creatorcontrib><creatorcontrib>Omote, Kazumasa</creatorcontrib><title>A study on robustness of malware detection model</title><title>Annales des télécommunications</title><addtitle>Ann. Telecommun</addtitle><description>In recent years, machine learning–based techniques are used to prevent cyberattacks caused by malware, and special attention is paid to the risks posed by such systems. However, there are relatively few studies on adversarial attacks on machine learning–based malware detection model using portable execution (PE) surface information and even less study from a defender’s perspective. In this study, we focus on malware detection field and treat the aforementioned issue from the perspectives of both attackers and defenders; subsequently, we propose a novel black-box adversarial attack method, named
Image_Resource
attack, and a robust malware detection model, respectively, using dimensionality reduction and machine learning techniques. The robustness of the proposed model is evaluated using PE surface information obtained from the FFRI Dataset 2018. During robustness evaluation, distances (e.g., the Euclidean distance) between the malware and benign files are measured, and the effectiveness of
Image_Resource
attack is estimated. Thus, we establish the effectiveness and superiority of the proposed model in terms of detection accuracy and robustness.</description><subject>Circuits</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Effectiveness</subject><subject>Engineering</subject><subject>Euclidean geometry</subject><subject>Evaluation</subject><subject>Information and Communication</subject><subject>Information Systems and Communication Service</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Networks</subject><subject>R & D/Technology Policy</subject><subject>Robustness</subject><subject>Signal,Image and Speech Processing</subject><issn>0003-4347</issn><issn>1958-9395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEf_gKuC6-hL0uS1y2HwCwbc6DokaSIzTJsxaZGZX2-1gjtXb3HvuQ8OIdcMbhkA3mXGeSUocEYB6qahxxNSsEbWtBGNPCUFAAhaiQrPyUXOWwAFKGVBYFnmYWwPZezLFO2Yh97nXMZQdmb3aZIvWz94N2ymvIut312Ss2B22V_93gV5e7h_XT3R9cvj82q5po4jDFSixcDQWdswKwQoa2XLvAkI6EXLnLHApPMtcqNCCCBUwFAFJSsnahPEgtzMu_sUP0afB72NY-qnl5ojw0op5GJq8bnlUsw5-aD3adOZdNAM9LcZPZvRkxn9Y0YfJ0jMUJ7K_btPf9P_UF8CvGbe</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zheng, Wanjia</creator><creator>Omote, Kazumasa</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8768-8033</orcidid></search><sort><creationdate>20221001</creationdate><title>A study on robustness of malware detection model</title><author>Zheng, Wanjia ; Omote, Kazumasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-57b7f17cbb91b3306bb5d1eaf707e3d1cab015ced72a6fff036f7f4f654c38af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Effectiveness</topic><topic>Engineering</topic><topic>Euclidean geometry</topic><topic>Evaluation</topic><topic>Information and Communication</topic><topic>Information Systems and Communication Service</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Networks</topic><topic>R & D/Technology Policy</topic><topic>Robustness</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wanjia</creatorcontrib><creatorcontrib>Omote, Kazumasa</creatorcontrib><collection>CrossRef</collection><jtitle>Annales des télécommunications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wanjia</au><au>Omote, Kazumasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on robustness of malware detection model</atitle><jtitle>Annales des télécommunications</jtitle><stitle>Ann. Telecommun</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>77</volume><issue>9-10</issue><spage>663</spage><epage>675</epage><pages>663-675</pages><issn>0003-4347</issn><eissn>1958-9395</eissn><abstract>In recent years, machine learning–based techniques are used to prevent cyberattacks caused by malware, and special attention is paid to the risks posed by such systems. However, there are relatively few studies on adversarial attacks on machine learning–based malware detection model using portable execution (PE) surface information and even less study from a defender’s perspective. In this study, we focus on malware detection field and treat the aforementioned issue from the perspectives of both attackers and defenders; subsequently, we propose a novel black-box adversarial attack method, named
Image_Resource
attack, and a robust malware detection model, respectively, using dimensionality reduction and machine learning techniques. The robustness of the proposed model is evaluated using PE surface information obtained from the FFRI Dataset 2018. During robustness evaluation, distances (e.g., the Euclidean distance) between the malware and benign files are measured, and the effectiveness of
Image_Resource
attack is estimated. Thus, we establish the effectiveness and superiority of the proposed model in terms of detection accuracy and robustness.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12243-021-00899-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8768-8033</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4347 |
ispartof | Annales des télécommunications, 2022-10, Vol.77 (9-10), p.663-675 |
issn | 0003-4347 1958-9395 |
language | eng |
recordid | cdi_proquest_journals_2717466723 |
source | SpringerLink Journals - AutoHoldings |
subjects | Circuits Communications Engineering Computer Communication Networks Effectiveness Engineering Euclidean geometry Evaluation Information and Communication Information Systems and Communication Service Machine learning Malware Networks R & D/Technology Policy Robustness Signal,Image and Speech Processing |
title | A study on robustness of malware detection model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20robustness%20of%20malware%20detection%20model&rft.jtitle=Annales%20des%20t%C3%A9l%C3%A9communications&rft.au=Zheng,%20Wanjia&rft.date=2022-10-01&rft.volume=77&rft.issue=9-10&rft.spage=663&rft.epage=675&rft.pages=663-675&rft.issn=0003-4347&rft.eissn=1958-9395&rft_id=info:doi/10.1007/s12243-021-00899-z&rft_dat=%3Cproquest_cross%3E2717466723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717466723&rft_id=info:pmid/&rfr_iscdi=true |