A study on robustness of malware detection model

In recent years, machine learning–based techniques are used to prevent cyberattacks caused by malware, and special attention is paid to the risks posed by such systems. However, there are relatively few studies on adversarial attacks on machine learning–based malware detection model using portable e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales des télécommunications 2022-10, Vol.77 (9-10), p.663-675
Hauptverfasser: Zheng, Wanjia, Omote, Kazumasa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 675
container_issue 9-10
container_start_page 663
container_title Annales des télécommunications
container_volume 77
creator Zheng, Wanjia
Omote, Kazumasa
description In recent years, machine learning–based techniques are used to prevent cyberattacks caused by malware, and special attention is paid to the risks posed by such systems. However, there are relatively few studies on adversarial attacks on machine learning–based malware detection model using portable execution (PE) surface information and even less study from a defender’s perspective. In this study, we focus on malware detection field and treat the aforementioned issue from the perspectives of both attackers and defenders; subsequently, we propose a novel black-box adversarial attack method, named Image_Resource attack, and a robust malware detection model, respectively, using dimensionality reduction and machine learning techniques. The robustness of the proposed model is evaluated using PE surface information obtained from the FFRI Dataset 2018. During robustness evaluation, distances (e.g., the Euclidean distance) between the malware and benign files are measured, and the effectiveness of Image_Resource attack is estimated. Thus, we establish the effectiveness and superiority of the proposed model in terms of detection accuracy and robustness.
doi_str_mv 10.1007/s12243-021-00899-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2717466723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717466723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-57b7f17cbb91b3306bb5d1eaf707e3d1cab015ced72a6fff036f7f4f654c38af3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEf_gKuC6-hL0uS1y2HwCwbc6DokaSIzTJsxaZGZX2-1gjtXb3HvuQ8OIdcMbhkA3mXGeSUocEYB6qahxxNSsEbWtBGNPCUFAAhaiQrPyUXOWwAFKGVBYFnmYWwPZezLFO2Yh97nXMZQdmb3aZIvWz94N2ymvIut312Ss2B22V_93gV5e7h_XT3R9cvj82q5po4jDFSixcDQWdswKwQoa2XLvAkI6EXLnLHApPMtcqNCCCBUwFAFJSsnahPEgtzMu_sUP0afB72NY-qnl5ojw0op5GJq8bnlUsw5-aD3adOZdNAM9LcZPZvRkxn9Y0YfJ0jMUJ7K_btPf9P_UF8CvGbe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717466723</pqid></control><display><type>article</type><title>A study on robustness of malware detection model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zheng, Wanjia ; Omote, Kazumasa</creator><creatorcontrib>Zheng, Wanjia ; Omote, Kazumasa</creatorcontrib><description>In recent years, machine learning–based techniques are used to prevent cyberattacks caused by malware, and special attention is paid to the risks posed by such systems. However, there are relatively few studies on adversarial attacks on machine learning–based malware detection model using portable execution (PE) surface information and even less study from a defender’s perspective. In this study, we focus on malware detection field and treat the aforementioned issue from the perspectives of both attackers and defenders; subsequently, we propose a novel black-box adversarial attack method, named Image_Resource attack, and a robust malware detection model, respectively, using dimensionality reduction and machine learning techniques. The robustness of the proposed model is evaluated using PE surface information obtained from the FFRI Dataset 2018. During robustness evaluation, distances (e.g., the Euclidean distance) between the malware and benign files are measured, and the effectiveness of Image_Resource attack is estimated. Thus, we establish the effectiveness and superiority of the proposed model in terms of detection accuracy and robustness.</description><identifier>ISSN: 0003-4347</identifier><identifier>EISSN: 1958-9395</identifier><identifier>DOI: 10.1007/s12243-021-00899-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Circuits ; Communications Engineering ; Computer Communication Networks ; Effectiveness ; Engineering ; Euclidean geometry ; Evaluation ; Information and Communication ; Information Systems and Communication Service ; Machine learning ; Malware ; Networks ; R &amp; D/Technology Policy ; Robustness ; Signal,Image and Speech Processing</subject><ispartof>Annales des télécommunications, 2022-10, Vol.77 (9-10), p.663-675</ispartof><rights>Institut Mines-Télécom and Springer Nature Switzerland AG 2021</rights><rights>Institut Mines-Télécom and Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-57b7f17cbb91b3306bb5d1eaf707e3d1cab015ced72a6fff036f7f4f654c38af3</cites><orcidid>0000-0002-8768-8033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12243-021-00899-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12243-021-00899-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zheng, Wanjia</creatorcontrib><creatorcontrib>Omote, Kazumasa</creatorcontrib><title>A study on robustness of malware detection model</title><title>Annales des télécommunications</title><addtitle>Ann. Telecommun</addtitle><description>In recent years, machine learning–based techniques are used to prevent cyberattacks caused by malware, and special attention is paid to the risks posed by such systems. However, there are relatively few studies on adversarial attacks on machine learning–based malware detection model using portable execution (PE) surface information and even less study from a defender’s perspective. In this study, we focus on malware detection field and treat the aforementioned issue from the perspectives of both attackers and defenders; subsequently, we propose a novel black-box adversarial attack method, named Image_Resource attack, and a robust malware detection model, respectively, using dimensionality reduction and machine learning techniques. The robustness of the proposed model is evaluated using PE surface information obtained from the FFRI Dataset 2018. During robustness evaluation, distances (e.g., the Euclidean distance) between the malware and benign files are measured, and the effectiveness of Image_Resource attack is estimated. Thus, we establish the effectiveness and superiority of the proposed model in terms of detection accuracy and robustness.</description><subject>Circuits</subject><subject>Communications Engineering</subject><subject>Computer Communication Networks</subject><subject>Effectiveness</subject><subject>Engineering</subject><subject>Euclidean geometry</subject><subject>Evaluation</subject><subject>Information and Communication</subject><subject>Information Systems and Communication Service</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Networks</subject><subject>R &amp; D/Technology Policy</subject><subject>Robustness</subject><subject>Signal,Image and Speech Processing</subject><issn>0003-4347</issn><issn>1958-9395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEf_gKuC6-hL0uS1y2HwCwbc6DokaSIzTJsxaZGZX2-1gjtXb3HvuQ8OIdcMbhkA3mXGeSUocEYB6qahxxNSsEbWtBGNPCUFAAhaiQrPyUXOWwAFKGVBYFnmYWwPZezLFO2Yh97nXMZQdmb3aZIvWz94N2ymvIut312Ss2B22V_93gV5e7h_XT3R9cvj82q5po4jDFSixcDQWdswKwQoa2XLvAkI6EXLnLHApPMtcqNCCCBUwFAFJSsnahPEgtzMu_sUP0afB72NY-qnl5ojw0op5GJq8bnlUsw5-aD3adOZdNAM9LcZPZvRkxn9Y0YfJ0jMUJ7K_btPf9P_UF8CvGbe</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zheng, Wanjia</creator><creator>Omote, Kazumasa</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8768-8033</orcidid></search><sort><creationdate>20221001</creationdate><title>A study on robustness of malware detection model</title><author>Zheng, Wanjia ; Omote, Kazumasa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-57b7f17cbb91b3306bb5d1eaf707e3d1cab015ced72a6fff036f7f4f654c38af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Communications Engineering</topic><topic>Computer Communication Networks</topic><topic>Effectiveness</topic><topic>Engineering</topic><topic>Euclidean geometry</topic><topic>Evaluation</topic><topic>Information and Communication</topic><topic>Information Systems and Communication Service</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Networks</topic><topic>R &amp; D/Technology Policy</topic><topic>Robustness</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Wanjia</creatorcontrib><creatorcontrib>Omote, Kazumasa</creatorcontrib><collection>CrossRef</collection><jtitle>Annales des télécommunications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Wanjia</au><au>Omote, Kazumasa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A study on robustness of malware detection model</atitle><jtitle>Annales des télécommunications</jtitle><stitle>Ann. Telecommun</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>77</volume><issue>9-10</issue><spage>663</spage><epage>675</epage><pages>663-675</pages><issn>0003-4347</issn><eissn>1958-9395</eissn><abstract>In recent years, machine learning–based techniques are used to prevent cyberattacks caused by malware, and special attention is paid to the risks posed by such systems. However, there are relatively few studies on adversarial attacks on machine learning–based malware detection model using portable execution (PE) surface information and even less study from a defender’s perspective. In this study, we focus on malware detection field and treat the aforementioned issue from the perspectives of both attackers and defenders; subsequently, we propose a novel black-box adversarial attack method, named Image_Resource attack, and a robust malware detection model, respectively, using dimensionality reduction and machine learning techniques. The robustness of the proposed model is evaluated using PE surface information obtained from the FFRI Dataset 2018. During robustness evaluation, distances (e.g., the Euclidean distance) between the malware and benign files are measured, and the effectiveness of Image_Resource attack is estimated. Thus, we establish the effectiveness and superiority of the proposed model in terms of detection accuracy and robustness.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s12243-021-00899-z</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8768-8033</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-4347
ispartof Annales des télécommunications, 2022-10, Vol.77 (9-10), p.663-675
issn 0003-4347
1958-9395
language eng
recordid cdi_proquest_journals_2717466723
source SpringerLink Journals - AutoHoldings
subjects Circuits
Communications Engineering
Computer Communication Networks
Effectiveness
Engineering
Euclidean geometry
Evaluation
Information and Communication
Information Systems and Communication Service
Machine learning
Malware
Networks
R & D/Technology Policy
Robustness
Signal,Image and Speech Processing
title A study on robustness of malware detection model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20study%20on%20robustness%20of%20malware%20detection%20model&rft.jtitle=Annales%20des%20t%C3%A9l%C3%A9communications&rft.au=Zheng,%20Wanjia&rft.date=2022-10-01&rft.volume=77&rft.issue=9-10&rft.spage=663&rft.epage=675&rft.pages=663-675&rft.issn=0003-4347&rft.eissn=1958-9395&rft_id=info:doi/10.1007/s12243-021-00899-z&rft_dat=%3Cproquest_cross%3E2717466723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717466723&rft_id=info:pmid/&rfr_iscdi=true