A Survey of Automated Programming Hint Generation: The HINTS Framework

Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provision of high-quality and universally accessible programming education. To realise the potential of these systems, recent work has proposed a diverse range of techniques for automatically generating feed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM computing surveys 2022-11, Vol.54 (8), p.1-27, Article 172
Hauptverfasser: McBroom, Jessica, Koprinska, Irena, Yacef, Kalina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 8
container_start_page 1
container_title ACM computing surveys
container_volume 54
creator McBroom, Jessica
Koprinska, Irena
Yacef, Kalina
description Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provision of high-quality and universally accessible programming education. To realise the potential of these systems, recent work has proposed a diverse range of techniques for automatically generating feedback in the form of hints to assist students with programming exercises. This article integrates these apparently disparate approaches into a coherent whole. Specifically, it emphasises that all hint techniques can be understood as a series of simpler components with similar properties. Using this insight, it presents a simple framework for describing such techniques, the Hint Iteration by Narrow-down and Transformation Steps framework, and surveys recent work in the context of this framework. Findings from this survey include that (1) hint techniques share similar properties, which can be used to visualise them together, (2) the individual steps of hint techniques should be considered when designing and evaluating hint systems, (3) more work is required to develop and improve evaluation methods, and (4) interesting relationships, such as the link between automated hints and data-driven evaluation, should be further investigated. Ultimately, this article aims to facilitate the development, extension, and comparison of automated programming hint techniques to maximise their educational potential.
doi_str_mv 10.1145/3469885
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2717339146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717339146</sourcerecordid><originalsourceid>FETCH-LOGICAL-a272t-ac5611056cee64a75afc28bd1186836a33d70f797acc865f4f37bffe301dc533</originalsourceid><addsrcrecordid>eNo90M1Lw0AQBfBFFKxVvHta8OApOpP9Sr2FYptCUaG5h-1mt6aabN0kSv97I62e3uH9mIFHyDXCPSIXD4zLSZKIEzJCIVSkGMdTMgImIQIGcE4u2nYLADFHOSKzlK768GX31Dua9p2vdWdL-hr8Jui6rpoNzaqmo3Pb2KC7yjePNH-zNFs85ys6G4z99uH9kpw5_dHaq2OOST57yqdZtHyZL6bpMtKxirtIGyERQUhjreRaCe1MnKxLxEQmTGrGSgVOTZQ2JpHCccfU2jnLAEsjGBuT28PZXfCfvW27Yuv70Awfi1ihYmyCXA7q7qBM8G0brCt2oap12BcIxe9GxXGjQd4cpDb1P_orfwB2l18e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717339146</pqid></control><display><type>article</type><title>A Survey of Automated Programming Hint Generation: The HINTS Framework</title><source>ACM Digital Library Complete</source><creator>McBroom, Jessica ; Koprinska, Irena ; Yacef, Kalina</creator><creatorcontrib>McBroom, Jessica ; Koprinska, Irena ; Yacef, Kalina</creatorcontrib><description>Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provision of high-quality and universally accessible programming education. To realise the potential of these systems, recent work has proposed a diverse range of techniques for automatically generating feedback in the form of hints to assist students with programming exercises. This article integrates these apparently disparate approaches into a coherent whole. Specifically, it emphasises that all hint techniques can be understood as a series of simpler components with similar properties. Using this insight, it presents a simple framework for describing such techniques, the Hint Iteration by Narrow-down and Transformation Steps framework, and surveys recent work in the context of this framework. Findings from this survey include that (1) hint techniques share similar properties, which can be used to visualise them together, (2) the individual steps of hint techniques should be considered when designing and evaluating hint systems, (3) more work is required to develop and improve evaluation methods, and (4) interesting relationships, such as the link between automated hints and data-driven evaluation, should be further investigated. Ultimately, this article aims to facilitate the development, extension, and comparison of automated programming hint techniques to maximise their educational potential.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3469885</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Applied computing ; Artificial intelligence ; Automation ; Computer science ; Computer-assisted instruction ; Computing methodologies ; Programming</subject><ispartof>ACM computing surveys, 2022-11, Vol.54 (8), p.1-27, Article 172</ispartof><rights>Copyright held by the owner/author(s). Publication rights licensed to ACM.</rights><rights>Copyright Association for Computing Machinery Nov 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a272t-ac5611056cee64a75afc28bd1186836a33d70f797acc865f4f37bffe301dc533</citedby><cites>FETCH-LOGICAL-a272t-ac5611056cee64a75afc28bd1186836a33d70f797acc865f4f37bffe301dc533</cites><orcidid>0000-0001-9479-4187 ; 0000-0001-7521-6429 ; 0000-0003-2517-8406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3469885$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>McBroom, Jessica</creatorcontrib><creatorcontrib>Koprinska, Irena</creatorcontrib><creatorcontrib>Yacef, Kalina</creatorcontrib><title>A Survey of Automated Programming Hint Generation: The HINTS Framework</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provision of high-quality and universally accessible programming education. To realise the potential of these systems, recent work has proposed a diverse range of techniques for automatically generating feedback in the form of hints to assist students with programming exercises. This article integrates these apparently disparate approaches into a coherent whole. Specifically, it emphasises that all hint techniques can be understood as a series of simpler components with similar properties. Using this insight, it presents a simple framework for describing such techniques, the Hint Iteration by Narrow-down and Transformation Steps framework, and surveys recent work in the context of this framework. Findings from this survey include that (1) hint techniques share similar properties, which can be used to visualise them together, (2) the individual steps of hint techniques should be considered when designing and evaluating hint systems, (3) more work is required to develop and improve evaluation methods, and (4) interesting relationships, such as the link between automated hints and data-driven evaluation, should be further investigated. Ultimately, this article aims to facilitate the development, extension, and comparison of automated programming hint techniques to maximise their educational potential.</description><subject>Applied computing</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Computer science</subject><subject>Computer-assisted instruction</subject><subject>Computing methodologies</subject><subject>Programming</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo90M1Lw0AQBfBFFKxVvHta8OApOpP9Sr2FYptCUaG5h-1mt6aabN0kSv97I62e3uH9mIFHyDXCPSIXD4zLSZKIEzJCIVSkGMdTMgImIQIGcE4u2nYLADFHOSKzlK768GX31Dua9p2vdWdL-hr8Jui6rpoNzaqmo3Pb2KC7yjePNH-zNFs85ys6G4z99uH9kpw5_dHaq2OOST57yqdZtHyZL6bpMtKxirtIGyERQUhjreRaCe1MnKxLxEQmTGrGSgVOTZQ2JpHCccfU2jnLAEsjGBuT28PZXfCfvW27Yuv70Awfi1ihYmyCXA7q7qBM8G0brCt2oap12BcIxe9GxXGjQd4cpDb1P_orfwB2l18e</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>McBroom, Jessica</creator><creator>Koprinska, Irena</creator><creator>Yacef, Kalina</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9479-4187</orcidid><orcidid>https://orcid.org/0000-0001-7521-6429</orcidid><orcidid>https://orcid.org/0000-0003-2517-8406</orcidid></search><sort><creationdate>20221101</creationdate><title>A Survey of Automated Programming Hint Generation: The HINTS Framework</title><author>McBroom, Jessica ; Koprinska, Irena ; Yacef, Kalina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a272t-ac5611056cee64a75afc28bd1186836a33d70f797acc865f4f37bffe301dc533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied computing</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Computer science</topic><topic>Computer-assisted instruction</topic><topic>Computing methodologies</topic><topic>Programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McBroom, Jessica</creatorcontrib><creatorcontrib>Koprinska, Irena</creatorcontrib><creatorcontrib>Yacef, Kalina</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McBroom, Jessica</au><au>Koprinska, Irena</au><au>Yacef, Kalina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey of Automated Programming Hint Generation: The HINTS Framework</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>54</volume><issue>8</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><artnum>172</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provision of high-quality and universally accessible programming education. To realise the potential of these systems, recent work has proposed a diverse range of techniques for automatically generating feedback in the form of hints to assist students with programming exercises. This article integrates these apparently disparate approaches into a coherent whole. Specifically, it emphasises that all hint techniques can be understood as a series of simpler components with similar properties. Using this insight, it presents a simple framework for describing such techniques, the Hint Iteration by Narrow-down and Transformation Steps framework, and surveys recent work in the context of this framework. Findings from this survey include that (1) hint techniques share similar properties, which can be used to visualise them together, (2) the individual steps of hint techniques should be considered when designing and evaluating hint systems, (3) more work is required to develop and improve evaluation methods, and (4) interesting relationships, such as the link between automated hints and data-driven evaluation, should be further investigated. Ultimately, this article aims to facilitate the development, extension, and comparison of automated programming hint techniques to maximise their educational potential.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3469885</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-9479-4187</orcidid><orcidid>https://orcid.org/0000-0001-7521-6429</orcidid><orcidid>https://orcid.org/0000-0003-2517-8406</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-0300
ispartof ACM computing surveys, 2022-11, Vol.54 (8), p.1-27, Article 172
issn 0360-0300
1557-7341
language eng
recordid cdi_proquest_journals_2717339146
source ACM Digital Library Complete
subjects Applied computing
Artificial intelligence
Automation
Computer science
Computer-assisted instruction
Computing methodologies
Programming
title A Survey of Automated Programming Hint Generation: The HINTS Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20of%20Automated%20Programming%20Hint%20Generation:%20The%20HINTS%20Framework&rft.jtitle=ACM%20computing%20surveys&rft.au=McBroom,%20Jessica&rft.date=2022-11-01&rft.volume=54&rft.issue=8&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.artnum=172&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3469885&rft_dat=%3Cproquest_cross%3E2717339146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717339146&rft_id=info:pmid/&rfr_iscdi=true