A Survey of Automated Programming Hint Generation: The HINTS Framework
Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provision of high-quality and universally accessible programming education. To realise the potential of these systems, recent work has proposed a diverse range of techniques for automatically generating feed...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2022-11, Vol.54 (8), p.1-27, Article 172 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 8 |
container_start_page | 1 |
container_title | ACM computing surveys |
container_volume | 54 |
creator | McBroom, Jessica Koprinska, Irena Yacef, Kalina |
description | Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provision of high-quality and universally accessible programming education. To realise the potential of these systems, recent work has proposed a diverse range of techniques for automatically generating feedback in the form of hints to assist students with programming exercises. This article integrates these apparently disparate approaches into a coherent whole. Specifically, it emphasises that all hint techniques can be understood as a series of simpler components with similar properties. Using this insight, it presents a simple framework for describing such techniques, the Hint Iteration by Narrow-down and Transformation Steps framework, and surveys recent work in the context of this framework. Findings from this survey include that (1) hint techniques share similar properties, which can be used to visualise them together, (2) the individual steps of hint techniques should be considered when designing and evaluating hint systems, (3) more work is required to develop and improve evaluation methods, and (4) interesting relationships, such as the link between automated hints and data-driven evaluation, should be further investigated. Ultimately, this article aims to facilitate the development, extension, and comparison of automated programming hint techniques to maximise their educational potential. |
doi_str_mv | 10.1145/3469885 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2717339146</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717339146</sourcerecordid><originalsourceid>FETCH-LOGICAL-a272t-ac5611056cee64a75afc28bd1186836a33d70f797acc865f4f37bffe301dc533</originalsourceid><addsrcrecordid>eNo90M1Lw0AQBfBFFKxVvHta8OApOpP9Sr2FYptCUaG5h-1mt6aabN0kSv97I62e3uH9mIFHyDXCPSIXD4zLSZKIEzJCIVSkGMdTMgImIQIGcE4u2nYLADFHOSKzlK768GX31Dua9p2vdWdL-hr8Jui6rpoNzaqmo3Pb2KC7yjePNH-zNFs85ys6G4z99uH9kpw5_dHaq2OOST57yqdZtHyZL6bpMtKxirtIGyERQUhjreRaCe1MnKxLxEQmTGrGSgVOTZQ2JpHCccfU2jnLAEsjGBuT28PZXfCfvW27Yuv70Awfi1ihYmyCXA7q7qBM8G0brCt2oap12BcIxe9GxXGjQd4cpDb1P_orfwB2l18e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717339146</pqid></control><display><type>article</type><title>A Survey of Automated Programming Hint Generation: The HINTS Framework</title><source>ACM Digital Library Complete</source><creator>McBroom, Jessica ; Koprinska, Irena ; Yacef, Kalina</creator><creatorcontrib>McBroom, Jessica ; Koprinska, Irena ; Yacef, Kalina</creatorcontrib><description>Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provision of high-quality and universally accessible programming education. To realise the potential of these systems, recent work has proposed a diverse range of techniques for automatically generating feedback in the form of hints to assist students with programming exercises. This article integrates these apparently disparate approaches into a coherent whole. Specifically, it emphasises that all hint techniques can be understood as a series of simpler components with similar properties. Using this insight, it presents a simple framework for describing such techniques, the Hint Iteration by Narrow-down and Transformation Steps framework, and surveys recent work in the context of this framework. Findings from this survey include that (1) hint techniques share similar properties, which can be used to visualise them together, (2) the individual steps of hint techniques should be considered when designing and evaluating hint systems, (3) more work is required to develop and improve evaluation methods, and (4) interesting relationships, such as the link between automated hints and data-driven evaluation, should be further investigated. Ultimately, this article aims to facilitate the development, extension, and comparison of automated programming hint techniques to maximise their educational potential.</description><identifier>ISSN: 0360-0300</identifier><identifier>EISSN: 1557-7341</identifier><identifier>DOI: 10.1145/3469885</identifier><language>eng</language><publisher>New York, NY: ACM</publisher><subject>Applied computing ; Artificial intelligence ; Automation ; Computer science ; Computer-assisted instruction ; Computing methodologies ; Programming</subject><ispartof>ACM computing surveys, 2022-11, Vol.54 (8), p.1-27, Article 172</ispartof><rights>Copyright held by the owner/author(s). Publication rights licensed to ACM.</rights><rights>Copyright Association for Computing Machinery Nov 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a272t-ac5611056cee64a75afc28bd1186836a33d70f797acc865f4f37bffe301dc533</citedby><cites>FETCH-LOGICAL-a272t-ac5611056cee64a75afc28bd1186836a33d70f797acc865f4f37bffe301dc533</cites><orcidid>0000-0001-9479-4187 ; 0000-0001-7521-6429 ; 0000-0003-2517-8406</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://dl.acm.org/doi/pdf/10.1145/3469885$$EPDF$$P50$$Gacm$$H</linktopdf><link.rule.ids>314,776,780,2276,27901,27902,40172,75970</link.rule.ids></links><search><creatorcontrib>McBroom, Jessica</creatorcontrib><creatorcontrib>Koprinska, Irena</creatorcontrib><creatorcontrib>Yacef, Kalina</creatorcontrib><title>A Survey of Automated Programming Hint Generation: The HINTS Framework</title><title>ACM computing surveys</title><addtitle>ACM CSUR</addtitle><description>Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provision of high-quality and universally accessible programming education. To realise the potential of these systems, recent work has proposed a diverse range of techniques for automatically generating feedback in the form of hints to assist students with programming exercises. This article integrates these apparently disparate approaches into a coherent whole. Specifically, it emphasises that all hint techniques can be understood as a series of simpler components with similar properties. Using this insight, it presents a simple framework for describing such techniques, the Hint Iteration by Narrow-down and Transformation Steps framework, and surveys recent work in the context of this framework. Findings from this survey include that (1) hint techniques share similar properties, which can be used to visualise them together, (2) the individual steps of hint techniques should be considered when designing and evaluating hint systems, (3) more work is required to develop and improve evaluation methods, and (4) interesting relationships, such as the link between automated hints and data-driven evaluation, should be further investigated. Ultimately, this article aims to facilitate the development, extension, and comparison of automated programming hint techniques to maximise their educational potential.</description><subject>Applied computing</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Computer science</subject><subject>Computer-assisted instruction</subject><subject>Computing methodologies</subject><subject>Programming</subject><issn>0360-0300</issn><issn>1557-7341</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo90M1Lw0AQBfBFFKxVvHta8OApOpP9Sr2FYptCUaG5h-1mt6aabN0kSv97I62e3uH9mIFHyDXCPSIXD4zLSZKIEzJCIVSkGMdTMgImIQIGcE4u2nYLADFHOSKzlK768GX31Dua9p2vdWdL-hr8Jui6rpoNzaqmo3Pb2KC7yjePNH-zNFs85ys6G4z99uH9kpw5_dHaq2OOST57yqdZtHyZL6bpMtKxirtIGyERQUhjreRaCe1MnKxLxEQmTGrGSgVOTZQ2JpHCccfU2jnLAEsjGBuT28PZXfCfvW27Yuv70Awfi1ihYmyCXA7q7qBM8G0brCt2oap12BcIxe9GxXGjQd4cpDb1P_orfwB2l18e</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>McBroom, Jessica</creator><creator>Koprinska, Irena</creator><creator>Yacef, Kalina</creator><general>ACM</general><general>Association for Computing Machinery</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9479-4187</orcidid><orcidid>https://orcid.org/0000-0001-7521-6429</orcidid><orcidid>https://orcid.org/0000-0003-2517-8406</orcidid></search><sort><creationdate>20221101</creationdate><title>A Survey of Automated Programming Hint Generation: The HINTS Framework</title><author>McBroom, Jessica ; Koprinska, Irena ; Yacef, Kalina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a272t-ac5611056cee64a75afc28bd1186836a33d70f797acc865f4f37bffe301dc533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied computing</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Computer science</topic><topic>Computer-assisted instruction</topic><topic>Computing methodologies</topic><topic>Programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McBroom, Jessica</creatorcontrib><creatorcontrib>Koprinska, Irena</creatorcontrib><creatorcontrib>Yacef, Kalina</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM computing surveys</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McBroom, Jessica</au><au>Koprinska, Irena</au><au>Yacef, Kalina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey of Automated Programming Hint Generation: The HINTS Framework</atitle><jtitle>ACM computing surveys</jtitle><stitle>ACM CSUR</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>54</volume><issue>8</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><artnum>172</artnum><issn>0360-0300</issn><eissn>1557-7341</eissn><abstract>Automated tutoring systems offer the flexibility and scalability necessary to facilitate the provision of high-quality and universally accessible programming education. To realise the potential of these systems, recent work has proposed a diverse range of techniques for automatically generating feedback in the form of hints to assist students with programming exercises. This article integrates these apparently disparate approaches into a coherent whole. Specifically, it emphasises that all hint techniques can be understood as a series of simpler components with similar properties. Using this insight, it presents a simple framework for describing such techniques, the Hint Iteration by Narrow-down and Transformation Steps framework, and surveys recent work in the context of this framework. Findings from this survey include that (1) hint techniques share similar properties, which can be used to visualise them together, (2) the individual steps of hint techniques should be considered when designing and evaluating hint systems, (3) more work is required to develop and improve evaluation methods, and (4) interesting relationships, such as the link between automated hints and data-driven evaluation, should be further investigated. Ultimately, this article aims to facilitate the development, extension, and comparison of automated programming hint techniques to maximise their educational potential.</abstract><cop>New York, NY</cop><pub>ACM</pub><doi>10.1145/3469885</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-9479-4187</orcidid><orcidid>https://orcid.org/0000-0001-7521-6429</orcidid><orcidid>https://orcid.org/0000-0003-2517-8406</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-0300 |
ispartof | ACM computing surveys, 2022-11, Vol.54 (8), p.1-27, Article 172 |
issn | 0360-0300 1557-7341 |
language | eng |
recordid | cdi_proquest_journals_2717339146 |
source | ACM Digital Library Complete |
subjects | Applied computing Artificial intelligence Automation Computer science Computer-assisted instruction Computing methodologies Programming |
title | A Survey of Automated Programming Hint Generation: The HINTS Framework |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A14%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20of%20Automated%20Programming%20Hint%20Generation:%20The%20HINTS%20Framework&rft.jtitle=ACM%20computing%20surveys&rft.au=McBroom,%20Jessica&rft.date=2022-11-01&rft.volume=54&rft.issue=8&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.artnum=172&rft.issn=0360-0300&rft.eissn=1557-7341&rft_id=info:doi/10.1145/3469885&rft_dat=%3Cproquest_cross%3E2717339146%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717339146&rft_id=info:pmid/&rfr_iscdi=true |