An approximation solution of linear Fredholm integro-differential equation using Collocation and Kantorovich methods

In this work, we construct two numerical approximations methods to deal with approximations of a linear Fredholm integro-differential equation. In order to show the existence and uniqueness of the solution we start by the reformulation of the integro-differential equation to a system of integral equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics & computing 2022-10, Vol.68 (5), p.3505-3525
Hauptverfasser: Tair, Boutheina, Guebbai, Hamza, Segni, Sami, Ghiat, Mourad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we construct two numerical approximations methods to deal with approximations of a linear Fredholm integro-differential equation. In order to show the existence and uniqueness of the solution we start by the reformulation of the integro-differential equation to a system of integral equations. We explain the general framework of the projection method which helps to clarify the basic ideas of the Collocation and Kantorovich methods. We introduce a new iterative method to avoid inversing the block operator matrix. Next, we apply the iterative projection methods and we present theorems to show the convergence of the constructed solutions to the exact solution. Finally, to observe the error behavior of the two methods, we give two numerical examples.
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-021-01654-2