EEG-Based Epileptic Seizure Prediction Using Temporal Multi-Channel Transformers
Epilepsy is one of the most common neurological diseases, characterized by transient and unprovoked events called epileptic seizures. Electroencephalogram (EEG) is an auxiliary method used to perform both the diagnosis and the monitoring of epilepsy. Given the unexpected nature of an epileptic seizu...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Godoy, Ricardo V Reis, Tharik J S Polegato, Paulo H Lahr, Gustavo J G Saute, Ricardo L Nakano, Frederico N Machado, Helio R Sakamoto, Americo C Becker, Marcelo Caurin, Glauco A P |
description | Epilepsy is one of the most common neurological diseases, characterized by transient and unprovoked events called epileptic seizures. Electroencephalogram (EEG) is an auxiliary method used to perform both the diagnosis and the monitoring of epilepsy. Given the unexpected nature of an epileptic seizure, its prediction would improve patient care, optimizing the quality of life and the treatment of epilepsy. Predicting an epileptic seizure implies the identification of two distinct states of EEG in a patient with epilepsy: the preictal and the interictal. In this paper, we developed two deep learning models called Temporal Multi-Channel Transformer (TMC-T) and Vision Transformer (TMC-ViT), adaptations of Transformer-based architectures for multi-channel temporal signals. Moreover, we accessed the impact of choosing different preictal duration, since its length is not a consensus among experts, and also evaluated how the sample size benefits each model. Our models are compared with fully connected, convolutional, and recurrent networks. The algorithms were patient-specific trained and evaluated on raw EEG signals from the CHB-MIT database. Experimental results and statistical validation demonstrated that our TMC-ViT model surpassed the CNN architecture, state-of-the-art in seizure prediction. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2717199489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717199489</sourcerecordid><originalsourceid>FETCH-proquest_journals_27171994893</originalsourceid><addsrcrecordid>eNqNyk0LgjAcgPERBEn5HQadBzo19ZqsugRCdpahf2syt7WXS5--Dn2ATs_h96xQRLMsJVVO6QbFzs1JktBDSYsii1DL2JkcuYMRMyMkGC8GfAPxDhZwa2EUgxda4bsT6oE7WIy2XOJrkF6Q5smVAok7y5WbtF3Auh1aT1w6iH_dov2Jdc2FGKtfAZzvZx2s-lJPy7RM6zqv6uy_6wMk5z7c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717199489</pqid></control><display><type>article</type><title>EEG-Based Epileptic Seizure Prediction Using Temporal Multi-Channel Transformers</title><source>Freely Accessible Journals</source><creator>Godoy, Ricardo V ; Reis, Tharik J S ; Polegato, Paulo H ; Lahr, Gustavo J G ; Saute, Ricardo L ; Nakano, Frederico N ; Machado, Helio R ; Sakamoto, Americo C ; Becker, Marcelo ; Caurin, Glauco A P</creator><creatorcontrib>Godoy, Ricardo V ; Reis, Tharik J S ; Polegato, Paulo H ; Lahr, Gustavo J G ; Saute, Ricardo L ; Nakano, Frederico N ; Machado, Helio R ; Sakamoto, Americo C ; Becker, Marcelo ; Caurin, Glauco A P</creatorcontrib><description>Epilepsy is one of the most common neurological diseases, characterized by transient and unprovoked events called epileptic seizures. Electroencephalogram (EEG) is an auxiliary method used to perform both the diagnosis and the monitoring of epilepsy. Given the unexpected nature of an epileptic seizure, its prediction would improve patient care, optimizing the quality of life and the treatment of epilepsy. Predicting an epileptic seizure implies the identification of two distinct states of EEG in a patient with epilepsy: the preictal and the interictal. In this paper, we developed two deep learning models called Temporal Multi-Channel Transformer (TMC-T) and Vision Transformer (TMC-ViT), adaptations of Transformer-based architectures for multi-channel temporal signals. Moreover, we accessed the impact of choosing different preictal duration, since its length is not a consensus among experts, and also evaluated how the sample size benefits each model. Our models are compared with fully connected, convolutional, and recurrent networks. The algorithms were patient-specific trained and evaluated on raw EEG signals from the CHB-MIT database. Experimental results and statistical validation demonstrated that our TMC-ViT model surpassed the CNN architecture, state-of-the-art in seizure prediction.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Convulsions & seizures ; Electroencephalography ; Epilepsy ; Machine learning ; Neurological diseases ; Seizures</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>782,786</link.rule.ids></links><search><creatorcontrib>Godoy, Ricardo V</creatorcontrib><creatorcontrib>Reis, Tharik J S</creatorcontrib><creatorcontrib>Polegato, Paulo H</creatorcontrib><creatorcontrib>Lahr, Gustavo J G</creatorcontrib><creatorcontrib>Saute, Ricardo L</creatorcontrib><creatorcontrib>Nakano, Frederico N</creatorcontrib><creatorcontrib>Machado, Helio R</creatorcontrib><creatorcontrib>Sakamoto, Americo C</creatorcontrib><creatorcontrib>Becker, Marcelo</creatorcontrib><creatorcontrib>Caurin, Glauco A P</creatorcontrib><title>EEG-Based Epileptic Seizure Prediction Using Temporal Multi-Channel Transformers</title><title>arXiv.org</title><description>Epilepsy is one of the most common neurological diseases, characterized by transient and unprovoked events called epileptic seizures. Electroencephalogram (EEG) is an auxiliary method used to perform both the diagnosis and the monitoring of epilepsy. Given the unexpected nature of an epileptic seizure, its prediction would improve patient care, optimizing the quality of life and the treatment of epilepsy. Predicting an epileptic seizure implies the identification of two distinct states of EEG in a patient with epilepsy: the preictal and the interictal. In this paper, we developed two deep learning models called Temporal Multi-Channel Transformer (TMC-T) and Vision Transformer (TMC-ViT), adaptations of Transformer-based architectures for multi-channel temporal signals. Moreover, we accessed the impact of choosing different preictal duration, since its length is not a consensus among experts, and also evaluated how the sample size benefits each model. Our models are compared with fully connected, convolutional, and recurrent networks. The algorithms were patient-specific trained and evaluated on raw EEG signals from the CHB-MIT database. Experimental results and statistical validation demonstrated that our TMC-ViT model surpassed the CNN architecture, state-of-the-art in seizure prediction.</description><subject>Algorithms</subject><subject>Convulsions & seizures</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Machine learning</subject><subject>Neurological diseases</subject><subject>Seizures</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0LgjAcgPERBEn5HQadBzo19ZqsugRCdpahf2syt7WXS5--Dn2ATs_h96xQRLMsJVVO6QbFzs1JktBDSYsii1DL2JkcuYMRMyMkGC8GfAPxDhZwa2EUgxda4bsT6oE7WIy2XOJrkF6Q5smVAok7y5WbtF3Auh1aT1w6iH_dov2Jdc2FGKtfAZzvZx2s-lJPy7RM6zqv6uy_6wMk5z7c</recordid><startdate>20220918</startdate><enddate>20220918</enddate><creator>Godoy, Ricardo V</creator><creator>Reis, Tharik J S</creator><creator>Polegato, Paulo H</creator><creator>Lahr, Gustavo J G</creator><creator>Saute, Ricardo L</creator><creator>Nakano, Frederico N</creator><creator>Machado, Helio R</creator><creator>Sakamoto, Americo C</creator><creator>Becker, Marcelo</creator><creator>Caurin, Glauco A P</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220918</creationdate><title>EEG-Based Epileptic Seizure Prediction Using Temporal Multi-Channel Transformers</title><author>Godoy, Ricardo V ; Reis, Tharik J S ; Polegato, Paulo H ; Lahr, Gustavo J G ; Saute, Ricardo L ; Nakano, Frederico N ; Machado, Helio R ; Sakamoto, Americo C ; Becker, Marcelo ; Caurin, Glauco A P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27171994893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Convulsions & seizures</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Machine learning</topic><topic>Neurological diseases</topic><topic>Seizures</topic><toplevel>online_resources</toplevel><creatorcontrib>Godoy, Ricardo V</creatorcontrib><creatorcontrib>Reis, Tharik J S</creatorcontrib><creatorcontrib>Polegato, Paulo H</creatorcontrib><creatorcontrib>Lahr, Gustavo J G</creatorcontrib><creatorcontrib>Saute, Ricardo L</creatorcontrib><creatorcontrib>Nakano, Frederico N</creatorcontrib><creatorcontrib>Machado, Helio R</creatorcontrib><creatorcontrib>Sakamoto, Americo C</creatorcontrib><creatorcontrib>Becker, Marcelo</creatorcontrib><creatorcontrib>Caurin, Glauco A P</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godoy, Ricardo V</au><au>Reis, Tharik J S</au><au>Polegato, Paulo H</au><au>Lahr, Gustavo J G</au><au>Saute, Ricardo L</au><au>Nakano, Frederico N</au><au>Machado, Helio R</au><au>Sakamoto, Americo C</au><au>Becker, Marcelo</au><au>Caurin, Glauco A P</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>EEG-Based Epileptic Seizure Prediction Using Temporal Multi-Channel Transformers</atitle><jtitle>arXiv.org</jtitle><date>2022-09-18</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>Epilepsy is one of the most common neurological diseases, characterized by transient and unprovoked events called epileptic seizures. Electroencephalogram (EEG) is an auxiliary method used to perform both the diagnosis and the monitoring of epilepsy. Given the unexpected nature of an epileptic seizure, its prediction would improve patient care, optimizing the quality of life and the treatment of epilepsy. Predicting an epileptic seizure implies the identification of two distinct states of EEG in a patient with epilepsy: the preictal and the interictal. In this paper, we developed two deep learning models called Temporal Multi-Channel Transformer (TMC-T) and Vision Transformer (TMC-ViT), adaptations of Transformer-based architectures for multi-channel temporal signals. Moreover, we accessed the impact of choosing different preictal duration, since its length is not a consensus among experts, and also evaluated how the sample size benefits each model. Our models are compared with fully connected, convolutional, and recurrent networks. The algorithms were patient-specific trained and evaluated on raw EEG signals from the CHB-MIT database. Experimental results and statistical validation demonstrated that our TMC-ViT model surpassed the CNN architecture, state-of-the-art in seizure prediction.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2717199489 |
source | Freely Accessible Journals |
subjects | Algorithms Convulsions & seizures Electroencephalography Epilepsy Machine learning Neurological diseases Seizures |
title | EEG-Based Epileptic Seizure Prediction Using Temporal Multi-Channel Transformers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=EEG-Based%20Epileptic%20Seizure%20Prediction%20Using%20Temporal%20Multi-Channel%20Transformers&rft.jtitle=arXiv.org&rft.au=Godoy,%20Ricardo%20V&rft.date=2022-09-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2717199489%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717199489&rft_id=info:pmid/&rfr_iscdi=true |