Prediction and measurement of damage to architectural heritages facades using convolutional neural networks

This paper set out an automatic multicategory damage detection technique using convolutional neural networks (CNN) models based on image classification and features’ extraction, to detect damages of historic structures such as: erosion, material loss, color change of the stone, and sabotage issues....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2022-10, Vol.34 (20), p.18125-18141
Hauptverfasser: Samhouri, Murad, Al-Arabiat, Lujain, Al-Atrash, Farah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18141
container_issue 20
container_start_page 18125
container_title Neural computing & applications
container_volume 34
creator Samhouri, Murad
Al-Arabiat, Lujain
Al-Atrash, Farah
description This paper set out an automatic multicategory damage detection technique using convolutional neural networks (CNN) models based on image classification and features’ extraction, to detect damages of historic structures such as: erosion, material loss, color change of the stone, and sabotage issues. The city of “Al-Salt” in Jordan was selected for the case study in this research. The best model showed an average damage detection accuracy of 95%. It was demonstrated that the proposed CNN model was significantly powerful, effective and reliable for damage detection of historic masonry buildings using features’ extraction based on imaging, and it contributed to the management and safety of historic heritage and preservation.
doi_str_mv 10.1007/s00521-022-07461-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2717191628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717191628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-a862b4160f81e476790f9abb4b63bb60188b72323ea1e30ae32550d3ea11b8dd3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hxYP-IkR1TxkpDgAGfLTjZt2iYutgPi3-M2SNw4jVbzzWg1hFwyuGYAxU0AyDnLgPMMCqlYlh-RGZNCZALy8pjMoJLJVlKckrMQ1gAgVZnPyObVY9PVsXMDNUNDezRh9NjjEKlraWN6s0QaHTW-XnUR6zh6s6Ur9F1MTqCtqU2TdAzdsKS1Gz7ddtzXJWrAAzxg_HJ-E87JSWu2AS9-dU7e7-_eFo_Z88vD0-L2Oau5rGJmSsWtZArakqEsVFFBWxlrpVXCWgWsLG3BBRdoGAowKHieQ7M_mS2bRszJ1dS78-5jxBD12o0-PRQ0L1jBKqZ4mSg-UbV3IXhs9c53vfHfmoHej6qnUXUaVR9G1XkKiSkUEjws0f9V_5P6AdY7e8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717191628</pqid></control><display><type>article</type><title>Prediction and measurement of damage to architectural heritages facades using convolutional neural networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Samhouri, Murad ; Al-Arabiat, Lujain ; Al-Atrash, Farah</creator><creatorcontrib>Samhouri, Murad ; Al-Arabiat, Lujain ; Al-Atrash, Farah</creatorcontrib><description>This paper set out an automatic multicategory damage detection technique using convolutional neural networks (CNN) models based on image classification and features’ extraction, to detect damages of historic structures such as: erosion, material loss, color change of the stone, and sabotage issues. The city of “Al-Salt” in Jordan was selected for the case study in this research. The best model showed an average damage detection accuracy of 95%. It was demonstrated that the proposed CNN model was significantly powerful, effective and reliable for damage detection of historic masonry buildings using features’ extraction based on imaging, and it contributed to the management and safety of historic heritage and preservation.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07461-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Architecture ; Artificial Intelligence ; Artificial neural networks ; Buildings ; Case studies ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Cultural heritage ; Damage detection ; Data Mining and Knowledge Discovery ; Deep learning ; Feature extraction ; Historical buildings ; Historical structures ; Image classification ; Image Processing and Computer Vision ; Neural networks ; Original Article ; Preventive maintenance ; Probability and Statistics in Computer Science ; Sabotage ; Safety management ; Support vector machines</subject><ispartof>Neural computing &amp; applications, 2022-10, Vol.34 (20), p.18125-18141</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-a862b4160f81e476790f9abb4b63bb60188b72323ea1e30ae32550d3ea11b8dd3</citedby><cites>FETCH-LOGICAL-c249t-a862b4160f81e476790f9abb4b63bb60188b72323ea1e30ae32550d3ea11b8dd3</cites><orcidid>0000-0002-0478-0628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-07461-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-07461-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Samhouri, Murad</creatorcontrib><creatorcontrib>Al-Arabiat, Lujain</creatorcontrib><creatorcontrib>Al-Atrash, Farah</creatorcontrib><title>Prediction and measurement of damage to architectural heritages facades using convolutional neural networks</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>This paper set out an automatic multicategory damage detection technique using convolutional neural networks (CNN) models based on image classification and features’ extraction, to detect damages of historic structures such as: erosion, material loss, color change of the stone, and sabotage issues. The city of “Al-Salt” in Jordan was selected for the case study in this research. The best model showed an average damage detection accuracy of 95%. It was demonstrated that the proposed CNN model was significantly powerful, effective and reliable for damage detection of historic masonry buildings using features’ extraction based on imaging, and it contributed to the management and safety of historic heritage and preservation.</description><subject>Architecture</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Buildings</subject><subject>Case studies</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Cultural heritage</subject><subject>Damage detection</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Historical buildings</subject><subject>Historical structures</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Preventive maintenance</subject><subject>Probability and Statistics in Computer Science</subject><subject>Sabotage</subject><subject>Safety management</subject><subject>Support vector machines</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hxYP-IkR1TxkpDgAGfLTjZt2iYutgPi3-M2SNw4jVbzzWg1hFwyuGYAxU0AyDnLgPMMCqlYlh-RGZNCZALy8pjMoJLJVlKckrMQ1gAgVZnPyObVY9PVsXMDNUNDezRh9NjjEKlraWN6s0QaHTW-XnUR6zh6s6Ur9F1MTqCtqU2TdAzdsKS1Gz7ddtzXJWrAAzxg_HJ-E87JSWu2AS9-dU7e7-_eFo_Z88vD0-L2Oau5rGJmSsWtZArakqEsVFFBWxlrpVXCWgWsLG3BBRdoGAowKHieQ7M_mS2bRszJ1dS78-5jxBD12o0-PRQ0L1jBKqZ4mSg-UbV3IXhs9c53vfHfmoHej6qnUXUaVR9G1XkKiSkUEjws0f9V_5P6AdY7e8U</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Samhouri, Murad</creator><creator>Al-Arabiat, Lujain</creator><creator>Al-Atrash, Farah</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0478-0628</orcidid></search><sort><creationdate>20221001</creationdate><title>Prediction and measurement of damage to architectural heritages facades using convolutional neural networks</title><author>Samhouri, Murad ; Al-Arabiat, Lujain ; Al-Atrash, Farah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-a862b4160f81e476790f9abb4b63bb60188b72323ea1e30ae32550d3ea11b8dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Architecture</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Buildings</topic><topic>Case studies</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Cultural heritage</topic><topic>Damage detection</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Historical buildings</topic><topic>Historical structures</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Preventive maintenance</topic><topic>Probability and Statistics in Computer Science</topic><topic>Sabotage</topic><topic>Safety management</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samhouri, Murad</creatorcontrib><creatorcontrib>Al-Arabiat, Lujain</creatorcontrib><creatorcontrib>Al-Atrash, Farah</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samhouri, Murad</au><au>Al-Arabiat, Lujain</au><au>Al-Atrash, Farah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and measurement of damage to architectural heritages facades using convolutional neural networks</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>34</volume><issue>20</issue><spage>18125</spage><epage>18141</epage><pages>18125-18141</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This paper set out an automatic multicategory damage detection technique using convolutional neural networks (CNN) models based on image classification and features’ extraction, to detect damages of historic structures such as: erosion, material loss, color change of the stone, and sabotage issues. The city of “Al-Salt” in Jordan was selected for the case study in this research. The best model showed an average damage detection accuracy of 95%. It was demonstrated that the proposed CNN model was significantly powerful, effective and reliable for damage detection of historic masonry buildings using features’ extraction based on imaging, and it contributed to the management and safety of historic heritage and preservation.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07461-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0478-0628</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022-10, Vol.34 (20), p.18125-18141
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2717191628
source SpringerLink Journals - AutoHoldings
subjects Architecture
Artificial Intelligence
Artificial neural networks
Buildings
Case studies
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Cultural heritage
Damage detection
Data Mining and Knowledge Discovery
Deep learning
Feature extraction
Historical buildings
Historical structures
Image classification
Image Processing and Computer Vision
Neural networks
Original Article
Preventive maintenance
Probability and Statistics in Computer Science
Sabotage
Safety management
Support vector machines
title Prediction and measurement of damage to architectural heritages facades using convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20measurement%20of%20damage%20to%20architectural%20heritages%20facades%20using%20convolutional%20neural%20networks&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Samhouri,%20Murad&rft.date=2022-10-01&rft.volume=34&rft.issue=20&rft.spage=18125&rft.epage=18141&rft.pages=18125-18141&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07461-5&rft_dat=%3Cproquest_cross%3E2717191628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717191628&rft_id=info:pmid/&rfr_iscdi=true