Prediction and measurement of damage to architectural heritages facades using convolutional neural networks
This paper set out an automatic multicategory damage detection technique using convolutional neural networks (CNN) models based on image classification and features’ extraction, to detect damages of historic structures such as: erosion, material loss, color change of the stone, and sabotage issues....
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2022-10, Vol.34 (20), p.18125-18141 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18141 |
---|---|
container_issue | 20 |
container_start_page | 18125 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Samhouri, Murad Al-Arabiat, Lujain Al-Atrash, Farah |
description | This paper set out an automatic multicategory damage detection technique using convolutional neural networks (CNN) models based on image classification and features’ extraction, to detect damages of historic structures such as: erosion, material loss, color change of the stone, and sabotage issues. The city of “Al-Salt” in Jordan was selected for the case study in this research. The best model showed an average damage detection accuracy of 95%. It was demonstrated that the proposed CNN model was significantly powerful, effective and reliable for damage detection of historic masonry buildings using features’ extraction based on imaging, and it contributed to the management and safety of historic heritage and preservation. |
doi_str_mv | 10.1007/s00521-022-07461-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2717191628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2717191628</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-a862b4160f81e476790f9abb4b63bb60188b72323ea1e30ae32550d3ea11b8dd3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hxYP-IkR1TxkpDgAGfLTjZt2iYutgPi3-M2SNw4jVbzzWg1hFwyuGYAxU0AyDnLgPMMCqlYlh-RGZNCZALy8pjMoJLJVlKckrMQ1gAgVZnPyObVY9PVsXMDNUNDezRh9NjjEKlraWN6s0QaHTW-XnUR6zh6s6Ur9F1MTqCtqU2TdAzdsKS1Gz7ddtzXJWrAAzxg_HJ-E87JSWu2AS9-dU7e7-_eFo_Z88vD0-L2Oau5rGJmSsWtZArakqEsVFFBWxlrpVXCWgWsLG3BBRdoGAowKHieQ7M_mS2bRszJ1dS78-5jxBD12o0-PRQ0L1jBKqZ4mSg-UbV3IXhs9c53vfHfmoHej6qnUXUaVR9G1XkKiSkUEjws0f9V_5P6AdY7e8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717191628</pqid></control><display><type>article</type><title>Prediction and measurement of damage to architectural heritages facades using convolutional neural networks</title><source>SpringerLink Journals - AutoHoldings</source><creator>Samhouri, Murad ; Al-Arabiat, Lujain ; Al-Atrash, Farah</creator><creatorcontrib>Samhouri, Murad ; Al-Arabiat, Lujain ; Al-Atrash, Farah</creatorcontrib><description>This paper set out an automatic multicategory damage detection technique using convolutional neural networks (CNN) models based on image classification and features’ extraction, to detect damages of historic structures such as: erosion, material loss, color change of the stone, and sabotage issues. The city of “Al-Salt” in Jordan was selected for the case study in this research. The best model showed an average damage detection accuracy of 95%. It was demonstrated that the proposed CNN model was significantly powerful, effective and reliable for damage detection of historic masonry buildings using features’ extraction based on imaging, and it contributed to the management and safety of historic heritage and preservation.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-07461-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Architecture ; Artificial Intelligence ; Artificial neural networks ; Buildings ; Case studies ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Cultural heritage ; Damage detection ; Data Mining and Knowledge Discovery ; Deep learning ; Feature extraction ; Historical buildings ; Historical structures ; Image classification ; Image Processing and Computer Vision ; Neural networks ; Original Article ; Preventive maintenance ; Probability and Statistics in Computer Science ; Sabotage ; Safety management ; Support vector machines</subject><ispartof>Neural computing & applications, 2022-10, Vol.34 (20), p.18125-18141</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-a862b4160f81e476790f9abb4b63bb60188b72323ea1e30ae32550d3ea11b8dd3</citedby><cites>FETCH-LOGICAL-c249t-a862b4160f81e476790f9abb4b63bb60188b72323ea1e30ae32550d3ea11b8dd3</cites><orcidid>0000-0002-0478-0628</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-07461-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-07461-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Samhouri, Murad</creatorcontrib><creatorcontrib>Al-Arabiat, Lujain</creatorcontrib><creatorcontrib>Al-Atrash, Farah</creatorcontrib><title>Prediction and measurement of damage to architectural heritages facades using convolutional neural networks</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>This paper set out an automatic multicategory damage detection technique using convolutional neural networks (CNN) models based on image classification and features’ extraction, to detect damages of historic structures such as: erosion, material loss, color change of the stone, and sabotage issues. The city of “Al-Salt” in Jordan was selected for the case study in this research. The best model showed an average damage detection accuracy of 95%. It was demonstrated that the proposed CNN model was significantly powerful, effective and reliable for damage detection of historic masonry buildings using features’ extraction based on imaging, and it contributed to the management and safety of historic heritage and preservation.</description><subject>Architecture</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Buildings</subject><subject>Case studies</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Cultural heritage</subject><subject>Damage detection</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Historical buildings</subject><subject>Historical structures</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Preventive maintenance</subject><subject>Probability and Statistics in Computer Science</subject><subject>Sabotage</subject><subject>Safety management</subject><subject>Support vector machines</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4hxYP-IkR1TxkpDgAGfLTjZt2iYutgPi3-M2SNw4jVbzzWg1hFwyuGYAxU0AyDnLgPMMCqlYlh-RGZNCZALy8pjMoJLJVlKckrMQ1gAgVZnPyObVY9PVsXMDNUNDezRh9NjjEKlraWN6s0QaHTW-XnUR6zh6s6Ur9F1MTqCtqU2TdAzdsKS1Gz7ddtzXJWrAAzxg_HJ-E87JSWu2AS9-dU7e7-_eFo_Z88vD0-L2Oau5rGJmSsWtZArakqEsVFFBWxlrpVXCWgWsLG3BBRdoGAowKHieQ7M_mS2bRszJ1dS78-5jxBD12o0-PRQ0L1jBKqZ4mSg-UbV3IXhs9c53vfHfmoHej6qnUXUaVR9G1XkKiSkUEjws0f9V_5P6AdY7e8U</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Samhouri, Murad</creator><creator>Al-Arabiat, Lujain</creator><creator>Al-Atrash, Farah</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0478-0628</orcidid></search><sort><creationdate>20221001</creationdate><title>Prediction and measurement of damage to architectural heritages facades using convolutional neural networks</title><author>Samhouri, Murad ; Al-Arabiat, Lujain ; Al-Atrash, Farah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-a862b4160f81e476790f9abb4b63bb60188b72323ea1e30ae32550d3ea11b8dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Architecture</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Buildings</topic><topic>Case studies</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Cultural heritage</topic><topic>Damage detection</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Historical buildings</topic><topic>Historical structures</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Preventive maintenance</topic><topic>Probability and Statistics in Computer Science</topic><topic>Sabotage</topic><topic>Safety management</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samhouri, Murad</creatorcontrib><creatorcontrib>Al-Arabiat, Lujain</creatorcontrib><creatorcontrib>Al-Atrash, Farah</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samhouri, Murad</au><au>Al-Arabiat, Lujain</au><au>Al-Atrash, Farah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and measurement of damage to architectural heritages facades using convolutional neural networks</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>34</volume><issue>20</issue><spage>18125</spage><epage>18141</epage><pages>18125-18141</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This paper set out an automatic multicategory damage detection technique using convolutional neural networks (CNN) models based on image classification and features’ extraction, to detect damages of historic structures such as: erosion, material loss, color change of the stone, and sabotage issues. The city of “Al-Salt” in Jordan was selected for the case study in this research. The best model showed an average damage detection accuracy of 95%. It was demonstrated that the proposed CNN model was significantly powerful, effective and reliable for damage detection of historic masonry buildings using features’ extraction based on imaging, and it contributed to the management and safety of historic heritage and preservation.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-07461-5</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0478-0628</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022-10, Vol.34 (20), p.18125-18141 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2717191628 |
source | SpringerLink Journals - AutoHoldings |
subjects | Architecture Artificial Intelligence Artificial neural networks Buildings Case studies Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Cultural heritage Damage detection Data Mining and Knowledge Discovery Deep learning Feature extraction Historical buildings Historical structures Image classification Image Processing and Computer Vision Neural networks Original Article Preventive maintenance Probability and Statistics in Computer Science Sabotage Safety management Support vector machines |
title | Prediction and measurement of damage to architectural heritages facades using convolutional neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20measurement%20of%20damage%20to%20architectural%20heritages%20facades%20using%20convolutional%20neural%20networks&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Samhouri,%20Murad&rft.date=2022-10-01&rft.volume=34&rft.issue=20&rft.spage=18125&rft.epage=18141&rft.pages=18125-18141&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-07461-5&rft_dat=%3Cproquest_cross%3E2717191628%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717191628&rft_id=info:pmid/&rfr_iscdi=true |