A Spatiotemporal Constrained Machine Learning Method for OCO-2 Solar-Induced Chlorophyll Fluorescence (SIF) Reconstruction
Solar-induced chlorophyll fluorescence (SIF) is an intuitive and accurate way to measure vegetation photosynthesis. Orbiting Carbon Observatory-2 (OCO-2)-retrieved SIF has shown great potential in estimating terrestrial gross primary production (GPP), but the discontinuous spatial coverage limits it...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-17 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Shen, Huanfeng Wang, Yuchen Guan, Xiaobin Huang, Wenli Chen, Jiajia Lin, Dekun Gan, Wenxia |
description | Solar-induced chlorophyll fluorescence (SIF) is an intuitive and accurate way to measure vegetation photosynthesis. Orbiting Carbon Observatory-2 (OCO-2)-retrieved SIF has shown great potential in estimating terrestrial gross primary production (GPP), but the discontinuous spatial coverage limits its application. Although some researchers have reconstructed OCO-2 SIF data, few have considered the uneven spatial and temporal distribution of the swath-distributed data, which can induce large uncertainties. In this article, we propose a spatiotemporal constrained light gradient boosting machine model (ST-LGBM) to reconstruct a contiguous OCO-2 SIF product (eight days, 0.05°), considering the data distribution characteristics. Two spatial and temporal constraining factors are introduced to utilize the relationships between the swath-distributed OCO-2 samples, combining the geographical regularity and vegetation phenological characteristics. The results indicate that the ST-LGBM method can improve the reconstruction accuracy in the missing data areas ( R^{2}= 0.79 ), with an increment of 0.05 in R^{2} . The declined accuracy of the traditional light gradient boosting machine (LightGBM) method in the missing data areas is well alleviated in our results. The real-data comparison with TROPOspheric Monitoring Instrument (TROPOMI) SIF observations also shows that the results of the ST-LGBM method can achieve a much better consistency, in both spatial distribution and temporal variation. The sensitivity analysis also shows that the ST-LGBM can support stable results when using various input combinations or different machine learning models. This approach represents an innovative way to reconstruct a more accurate globally continuous OCO-2 SIF product and also provides references to reconstruct other data with a similar distribution. |
doi_str_mv | 10.1109/TGRS.2022.3204885 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2717159351</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9882006</ieee_id><sourcerecordid>2717159351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-261086ffe92bc40c583b69ee809e56705e08822682ff63276a18ba53c292a0653</originalsourceid><addsrcrecordid>eNo9kMFOwkAQhjdGExF9AONlEy96KM5uu9vdI2kESSAkFM_NskylpHTrtj3g01uEeJo5fP8_k4-QRwYjxkC_raerdMSB81HIIVJKXJEBE0IFIKPomgyAaRlwpfktuWuaPQCLBIsH5GdM09q0hWvxUDtvSpq4qmm9KSrc0oWxu36hczS-KqovusB257Y0d54uk2XAaepK44NZte1szye70nlX745lSSdl5zw2FiuL9CWdTV7pCu1feWf7g9U9uclN2eDDZQ7J5-R9nXwE8-V0lozngeU6bAMuGSiZ56j5xkZghQo3UiMq0ChkDAJBKc6l4nkuQx5Lw9TGiLBPcwNShEPyfO6tvfvusGmzvet81Z_MeMxiJnQoWE-xM2W9axqPeVb74mD8MWOQnRRnJ8XZSXF2Udxnns6ZAhH_ed2_AyDDX2jxdxM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2717159351</pqid></control><display><type>article</type><title>A Spatiotemporal Constrained Machine Learning Method for OCO-2 Solar-Induced Chlorophyll Fluorescence (SIF) Reconstruction</title><source>IEEE Electronic Library (IEL)</source><creator>Shen, Huanfeng ; Wang, Yuchen ; Guan, Xiaobin ; Huang, Wenli ; Chen, Jiajia ; Lin, Dekun ; Gan, Wenxia</creator><creatorcontrib>Shen, Huanfeng ; Wang, Yuchen ; Guan, Xiaobin ; Huang, Wenli ; Chen, Jiajia ; Lin, Dekun ; Gan, Wenxia</creatorcontrib><description><![CDATA[Solar-induced chlorophyll fluorescence (SIF) is an intuitive and accurate way to measure vegetation photosynthesis. Orbiting Carbon Observatory-2 (OCO-2)-retrieved SIF has shown great potential in estimating terrestrial gross primary production (GPP), but the discontinuous spatial coverage limits its application. Although some researchers have reconstructed OCO-2 SIF data, few have considered the uneven spatial and temporal distribution of the swath-distributed data, which can induce large uncertainties. In this article, we propose a spatiotemporal constrained light gradient boosting machine model (ST-LGBM) to reconstruct a contiguous OCO-2 SIF product (eight days, 0.05°), considering the data distribution characteristics. Two spatial and temporal constraining factors are introduced to utilize the relationships between the swath-distributed OCO-2 samples, combining the geographical regularity and vegetation phenological characteristics. The results indicate that the ST-LGBM method can improve the reconstruction accuracy in the missing data areas (<inline-formula> <tex-math notation="LaTeX">R^{2}= 0.79 </tex-math></inline-formula>), with an increment of 0.05 in <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>. The declined accuracy of the traditional light gradient boosting machine (LightGBM) method in the missing data areas is well alleviated in our results. The real-data comparison with TROPOspheric Monitoring Instrument (TROPOMI) SIF observations also shows that the results of the ST-LGBM method can achieve a much better consistency, in both spatial distribution and temporal variation. The sensitivity analysis also shows that the ST-LGBM can support stable results when using various input combinations or different machine learning models. This approach represents an innovative way to reconstruct a more accurate globally continuous OCO-2 SIF product and also provides references to reconstruct other data with a similar distribution.]]></description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2022.3204885</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Biological system modeling ; Carbon ; Chlorophyll ; Chlorophylls ; Data models ; Fluorescence ; Instruments ; Learning algorithms ; Machine learning ; Methods ; Missing data ; Monitoring instruments ; Orbiting Carbon Observatory-2 (OCO-2) ; Photosynthesis ; Primary production ; Reconstruction ; Satellites ; Sensitivity analysis ; solar-induced chlorophyll fluorescence (SIF) ; Spatial distribution ; Spatial resolution ; spatiotemporal constraint ; Temporal distribution ; Temporal variations ; Vegetation ; Vegetation mapping</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-261086ffe92bc40c583b69ee809e56705e08822682ff63276a18ba53c292a0653</citedby><cites>FETCH-LOGICAL-c293t-261086ffe92bc40c583b69ee809e56705e08822682ff63276a18ba53c292a0653</cites><orcidid>0000-0001-9608-1690 ; 0000-0002-3812-7141 ; 0000-0002-4140-1869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9882006$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9882006$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shen, Huanfeng</creatorcontrib><creatorcontrib>Wang, Yuchen</creatorcontrib><creatorcontrib>Guan, Xiaobin</creatorcontrib><creatorcontrib>Huang, Wenli</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Lin, Dekun</creatorcontrib><creatorcontrib>Gan, Wenxia</creatorcontrib><title>A Spatiotemporal Constrained Machine Learning Method for OCO-2 Solar-Induced Chlorophyll Fluorescence (SIF) Reconstruction</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description><![CDATA[Solar-induced chlorophyll fluorescence (SIF) is an intuitive and accurate way to measure vegetation photosynthesis. Orbiting Carbon Observatory-2 (OCO-2)-retrieved SIF has shown great potential in estimating terrestrial gross primary production (GPP), but the discontinuous spatial coverage limits its application. Although some researchers have reconstructed OCO-2 SIF data, few have considered the uneven spatial and temporal distribution of the swath-distributed data, which can induce large uncertainties. In this article, we propose a spatiotemporal constrained light gradient boosting machine model (ST-LGBM) to reconstruct a contiguous OCO-2 SIF product (eight days, 0.05°), considering the data distribution characteristics. Two spatial and temporal constraining factors are introduced to utilize the relationships between the swath-distributed OCO-2 samples, combining the geographical regularity and vegetation phenological characteristics. The results indicate that the ST-LGBM method can improve the reconstruction accuracy in the missing data areas (<inline-formula> <tex-math notation="LaTeX">R^{2}= 0.79 </tex-math></inline-formula>), with an increment of 0.05 in <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>. The declined accuracy of the traditional light gradient boosting machine (LightGBM) method in the missing data areas is well alleviated in our results. The real-data comparison with TROPOspheric Monitoring Instrument (TROPOMI) SIF observations also shows that the results of the ST-LGBM method can achieve a much better consistency, in both spatial distribution and temporal variation. The sensitivity analysis also shows that the ST-LGBM can support stable results when using various input combinations or different machine learning models. This approach represents an innovative way to reconstruct a more accurate globally continuous OCO-2 SIF product and also provides references to reconstruct other data with a similar distribution.]]></description><subject>Accuracy</subject><subject>Biological system modeling</subject><subject>Carbon</subject><subject>Chlorophyll</subject><subject>Chlorophylls</subject><subject>Data models</subject><subject>Fluorescence</subject><subject>Instruments</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Missing data</subject><subject>Monitoring instruments</subject><subject>Orbiting Carbon Observatory-2 (OCO-2)</subject><subject>Photosynthesis</subject><subject>Primary production</subject><subject>Reconstruction</subject><subject>Satellites</subject><subject>Sensitivity analysis</subject><subject>solar-induced chlorophyll fluorescence (SIF)</subject><subject>Spatial distribution</subject><subject>Spatial resolution</subject><subject>spatiotemporal constraint</subject><subject>Temporal distribution</subject><subject>Temporal variations</subject><subject>Vegetation</subject><subject>Vegetation mapping</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOwkAQhjdGExF9AONlEy96KM5uu9vdI2kESSAkFM_NskylpHTrtj3g01uEeJo5fP8_k4-QRwYjxkC_raerdMSB81HIIVJKXJEBE0IFIKPomgyAaRlwpfktuWuaPQCLBIsH5GdM09q0hWvxUDtvSpq4qmm9KSrc0oWxu36hczS-KqovusB257Y0d54uk2XAaepK44NZte1szye70nlX745lSSdl5zw2FiuL9CWdTV7pCu1feWf7g9U9uclN2eDDZQ7J5-R9nXwE8-V0lozngeU6bAMuGSiZ56j5xkZghQo3UiMq0ChkDAJBKc6l4nkuQx5Lw9TGiLBPcwNShEPyfO6tvfvusGmzvet81Z_MeMxiJnQoWE-xM2W9axqPeVb74mD8MWOQnRRnJ8XZSXF2Udxnns6ZAhH_ed2_AyDDX2jxdxM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shen, Huanfeng</creator><creator>Wang, Yuchen</creator><creator>Guan, Xiaobin</creator><creator>Huang, Wenli</creator><creator>Chen, Jiajia</creator><creator>Lin, Dekun</creator><creator>Gan, Wenxia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9608-1690</orcidid><orcidid>https://orcid.org/0000-0002-3812-7141</orcidid><orcidid>https://orcid.org/0000-0002-4140-1869</orcidid></search><sort><creationdate>2022</creationdate><title>A Spatiotemporal Constrained Machine Learning Method for OCO-2 Solar-Induced Chlorophyll Fluorescence (SIF) Reconstruction</title><author>Shen, Huanfeng ; Wang, Yuchen ; Guan, Xiaobin ; Huang, Wenli ; Chen, Jiajia ; Lin, Dekun ; Gan, Wenxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-261086ffe92bc40c583b69ee809e56705e08822682ff63276a18ba53c292a0653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Biological system modeling</topic><topic>Carbon</topic><topic>Chlorophyll</topic><topic>Chlorophylls</topic><topic>Data models</topic><topic>Fluorescence</topic><topic>Instruments</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Missing data</topic><topic>Monitoring instruments</topic><topic>Orbiting Carbon Observatory-2 (OCO-2)</topic><topic>Photosynthesis</topic><topic>Primary production</topic><topic>Reconstruction</topic><topic>Satellites</topic><topic>Sensitivity analysis</topic><topic>solar-induced chlorophyll fluorescence (SIF)</topic><topic>Spatial distribution</topic><topic>Spatial resolution</topic><topic>spatiotemporal constraint</topic><topic>Temporal distribution</topic><topic>Temporal variations</topic><topic>Vegetation</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Huanfeng</creatorcontrib><creatorcontrib>Wang, Yuchen</creatorcontrib><creatorcontrib>Guan, Xiaobin</creatorcontrib><creatorcontrib>Huang, Wenli</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Lin, Dekun</creatorcontrib><creatorcontrib>Gan, Wenxia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shen, Huanfeng</au><au>Wang, Yuchen</au><au>Guan, Xiaobin</au><au>Huang, Wenli</au><au>Chen, Jiajia</au><au>Lin, Dekun</au><au>Gan, Wenxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Spatiotemporal Constrained Machine Learning Method for OCO-2 Solar-Induced Chlorophyll Fluorescence (SIF) Reconstruction</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract><![CDATA[Solar-induced chlorophyll fluorescence (SIF) is an intuitive and accurate way to measure vegetation photosynthesis. Orbiting Carbon Observatory-2 (OCO-2)-retrieved SIF has shown great potential in estimating terrestrial gross primary production (GPP), but the discontinuous spatial coverage limits its application. Although some researchers have reconstructed OCO-2 SIF data, few have considered the uneven spatial and temporal distribution of the swath-distributed data, which can induce large uncertainties. In this article, we propose a spatiotemporal constrained light gradient boosting machine model (ST-LGBM) to reconstruct a contiguous OCO-2 SIF product (eight days, 0.05°), considering the data distribution characteristics. Two spatial and temporal constraining factors are introduced to utilize the relationships between the swath-distributed OCO-2 samples, combining the geographical regularity and vegetation phenological characteristics. The results indicate that the ST-LGBM method can improve the reconstruction accuracy in the missing data areas (<inline-formula> <tex-math notation="LaTeX">R^{2}= 0.79 </tex-math></inline-formula>), with an increment of 0.05 in <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula>. The declined accuracy of the traditional light gradient boosting machine (LightGBM) method in the missing data areas is well alleviated in our results. The real-data comparison with TROPOspheric Monitoring Instrument (TROPOMI) SIF observations also shows that the results of the ST-LGBM method can achieve a much better consistency, in both spatial distribution and temporal variation. The sensitivity analysis also shows that the ST-LGBM can support stable results when using various input combinations or different machine learning models. This approach represents an innovative way to reconstruct a more accurate globally continuous OCO-2 SIF product and also provides references to reconstruct other data with a similar distribution.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2022.3204885</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-9608-1690</orcidid><orcidid>https://orcid.org/0000-0002-3812-7141</orcidid><orcidid>https://orcid.org/0000-0002-4140-1869</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_2717159351 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Biological system modeling Carbon Chlorophyll Chlorophylls Data models Fluorescence Instruments Learning algorithms Machine learning Methods Missing data Monitoring instruments Orbiting Carbon Observatory-2 (OCO-2) Photosynthesis Primary production Reconstruction Satellites Sensitivity analysis solar-induced chlorophyll fluorescence (SIF) Spatial distribution Spatial resolution spatiotemporal constraint Temporal distribution Temporal variations Vegetation Vegetation mapping |
title | A Spatiotemporal Constrained Machine Learning Method for OCO-2 Solar-Induced Chlorophyll Fluorescence (SIF) Reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A57%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Spatiotemporal%20Constrained%20Machine%20Learning%20Method%20for%20OCO-2%20Solar-Induced%20Chlorophyll%20Fluorescence%20(SIF)%20Reconstruction&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Shen,%20Huanfeng&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2022.3204885&rft_dat=%3Cproquest_RIE%3E2717159351%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2717159351&rft_id=info:pmid/&rft_ieee_id=9882006&rfr_iscdi=true |