Image recognition of COVID-19 using DarkCovidNet architecture based on convolutional neural network

Purpose The purpose of this study/paper To focus on finding COVID-19 with the help of DarkCovidNet architecture on patient images. Design/methodology/approach We used machine learning techniques with convolutional neural network. Findings Detecting COVID-19 symptoms from patient CT scan images. Orig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of engineering 2022-02, Vol.19 (1), p.90-97
Hauptverfasser: Kumar, Pankaj, Bajpai, Bhavna, Gupta, Deepak Omprakash, Jain, Dinesh C., Vimal, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 97
container_issue 1
container_start_page 90
container_title World journal of engineering
container_volume 19
creator Kumar, Pankaj
Bajpai, Bhavna
Gupta, Deepak Omprakash
Jain, Dinesh C.
Vimal, S.
description Purpose The purpose of this study/paper To focus on finding COVID-19 with the help of DarkCovidNet architecture on patient images. Design/methodology/approach We used machine learning techniques with convolutional neural network. Findings Detecting COVID-19 symptoms from patient CT scan images. Originality/value This paper contains a new architecture for detecting COVID-19 symptoms from patient computed tomography scan images.
doi_str_mv 10.1108/WJE-12-2020-0655
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2716865610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716865610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-b3ec179094a41e7e42c6afe47595580495500697e6d0940adb060efb1337dc823</originalsourceid><addsrcrecordid>eNptkL1PwzAQxSMEElXpzmiJ2fTsxE4yorZAUUUXPkbLcS4l_YiLnRTx3-NQBpC44e6G957uflF0yeCaMcjGrw8zyjjlwIGCFOIkGrAUMip4lpz-2s-jkfdrCJVIztJ4EJn5Tq-QODR21dRtbRtiKzJZvsynlOWk83WzIlPtNhN7qMtHbIl25q1u0bSdQ1JojyUJJmObg912fYDekgY79z3aD-s2F9FZpbceRz9zGD3fzp4m93SxvJtPbhbUxCJuaRGjYWkOeaIThikm3EhdYZKKXIgMktABZJ6iLIMGdFmABKwKFsdpaTIeD6OrY-7e2fcOfavWtnPhHq94ymQmhWQQVHBUGWe9d1ipvat32n0qBqqnqQJNxbjqaaqeZrCMjxbcYfir_M_xh3_8BaiEdK4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716865610</pqid></control><display><type>article</type><title>Image recognition of COVID-19 using DarkCovidNet architecture based on convolutional neural network</title><source>Standard: Emerald eJournal Premier Collection</source><creator>Kumar, Pankaj ; Bajpai, Bhavna ; Gupta, Deepak Omprakash ; Jain, Dinesh C. ; Vimal, S.</creator><creatorcontrib>Kumar, Pankaj ; Bajpai, Bhavna ; Gupta, Deepak Omprakash ; Jain, Dinesh C. ; Vimal, S.</creatorcontrib><description>Purpose The purpose of this study/paper To focus on finding COVID-19 with the help of DarkCovidNet architecture on patient images. Design/methodology/approach We used machine learning techniques with convolutional neural network. Findings Detecting COVID-19 symptoms from patient CT scan images. Originality/value This paper contains a new architecture for detecting COVID-19 symptoms from patient computed tomography scan images.</description><identifier>ISSN: 1708-5284</identifier><identifier>EISSN: 1708-5284</identifier><identifier>DOI: 10.1108/WJE-12-2020-0655</identifier><language>eng</language><publisher>Brentwood: Emerald Publishing Limited</publisher><subject>Artificial neural networks ; Computed tomography ; Coronaviruses ; COVID-19 ; Datasets ; Machine learning ; Medical imaging ; Medical research ; Neural networks ; Object recognition ; X-rays</subject><ispartof>World journal of engineering, 2022-02, Vol.19 (1), p.90-97</ispartof><rights>Emerald Publishing Limited</rights><rights>Emerald Publishing Limited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-b3ec179094a41e7e42c6afe47595580495500697e6d0940adb060efb1337dc823</citedby><cites>FETCH-LOGICAL-c353t-b3ec179094a41e7e42c6afe47595580495500697e6d0940adb060efb1337dc823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.emerald.com/insight/content/doi/10.1108/WJE-12-2020-0655/full/html$$EHTML$$P50$$Gemerald$$H</linktohtml><link.rule.ids>314,780,784,21695,27924,27925,53244</link.rule.ids></links><search><creatorcontrib>Kumar, Pankaj</creatorcontrib><creatorcontrib>Bajpai, Bhavna</creatorcontrib><creatorcontrib>Gupta, Deepak Omprakash</creatorcontrib><creatorcontrib>Jain, Dinesh C.</creatorcontrib><creatorcontrib>Vimal, S.</creatorcontrib><title>Image recognition of COVID-19 using DarkCovidNet architecture based on convolutional neural network</title><title>World journal of engineering</title><description>Purpose The purpose of this study/paper To focus on finding COVID-19 with the help of DarkCovidNet architecture on patient images. Design/methodology/approach We used machine learning techniques with convolutional neural network. Findings Detecting COVID-19 symptoms from patient CT scan images. Originality/value This paper contains a new architecture for detecting COVID-19 symptoms from patient computed tomography scan images.</description><subject>Artificial neural networks</subject><subject>Computed tomography</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Datasets</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Neural networks</subject><subject>Object recognition</subject><subject>X-rays</subject><issn>1708-5284</issn><issn>1708-5284</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkL1PwzAQxSMEElXpzmiJ2fTsxE4yorZAUUUXPkbLcS4l_YiLnRTx3-NQBpC44e6G957uflF0yeCaMcjGrw8zyjjlwIGCFOIkGrAUMip4lpz-2s-jkfdrCJVIztJ4EJn5Tq-QODR21dRtbRtiKzJZvsynlOWk83WzIlPtNhN7qMtHbIl25q1u0bSdQ1JojyUJJmObg912fYDekgY79z3aD-s2F9FZpbceRz9zGD3fzp4m93SxvJtPbhbUxCJuaRGjYWkOeaIThikm3EhdYZKKXIgMktABZJ6iLIMGdFmABKwKFsdpaTIeD6OrY-7e2fcOfavWtnPhHq94ymQmhWQQVHBUGWe9d1ipvat32n0qBqqnqQJNxbjqaaqeZrCMjxbcYfir_M_xh3_8BaiEdK4</recordid><startdate>20220222</startdate><enddate>20220222</enddate><creator>Kumar, Pankaj</creator><creator>Bajpai, Bhavna</creator><creator>Gupta, Deepak Omprakash</creator><creator>Jain, Dinesh C.</creator><creator>Vimal, S.</creator><general>Emerald Publishing Limited</general><general>Emerald Group Publishing Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220222</creationdate><title>Image recognition of COVID-19 using DarkCovidNet architecture based on convolutional neural network</title><author>Kumar, Pankaj ; Bajpai, Bhavna ; Gupta, Deepak Omprakash ; Jain, Dinesh C. ; Vimal, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-b3ec179094a41e7e42c6afe47595580495500697e6d0940adb060efb1337dc823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Computed tomography</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Datasets</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Neural networks</topic><topic>Object recognition</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Pankaj</creatorcontrib><creatorcontrib>Bajpai, Bhavna</creatorcontrib><creatorcontrib>Gupta, Deepak Omprakash</creatorcontrib><creatorcontrib>Jain, Dinesh C.</creatorcontrib><creatorcontrib>Vimal, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>World journal of engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Pankaj</au><au>Bajpai, Bhavna</au><au>Gupta, Deepak Omprakash</au><au>Jain, Dinesh C.</au><au>Vimal, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image recognition of COVID-19 using DarkCovidNet architecture based on convolutional neural network</atitle><jtitle>World journal of engineering</jtitle><date>2022-02-22</date><risdate>2022</risdate><volume>19</volume><issue>1</issue><spage>90</spage><epage>97</epage><pages>90-97</pages><issn>1708-5284</issn><eissn>1708-5284</eissn><abstract>Purpose The purpose of this study/paper To focus on finding COVID-19 with the help of DarkCovidNet architecture on patient images. Design/methodology/approach We used machine learning techniques with convolutional neural network. Findings Detecting COVID-19 symptoms from patient CT scan images. Originality/value This paper contains a new architecture for detecting COVID-19 symptoms from patient computed tomography scan images.</abstract><cop>Brentwood</cop><pub>Emerald Publishing Limited</pub><doi>10.1108/WJE-12-2020-0655</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1708-5284
ispartof World journal of engineering, 2022-02, Vol.19 (1), p.90-97
issn 1708-5284
1708-5284
language eng
recordid cdi_proquest_journals_2716865610
source Standard: Emerald eJournal Premier Collection
subjects Artificial neural networks
Computed tomography
Coronaviruses
COVID-19
Datasets
Machine learning
Medical imaging
Medical research
Neural networks
Object recognition
X-rays
title Image recognition of COVID-19 using DarkCovidNet architecture based on convolutional neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20recognition%20of%20COVID-19%20using%20DarkCovidNet%20architecture%20based%20on%20convolutional%20neural%20network&rft.jtitle=World%20journal%20of%20engineering&rft.au=Kumar,%20Pankaj&rft.date=2022-02-22&rft.volume=19&rft.issue=1&rft.spage=90&rft.epage=97&rft.pages=90-97&rft.issn=1708-5284&rft.eissn=1708-5284&rft_id=info:doi/10.1108/WJE-12-2020-0655&rft_dat=%3Cproquest_cross%3E2716865610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716865610&rft_id=info:pmid/&rfr_iscdi=true