Artificial bee colony algorithm with an adaptive search manner and dimension perturbation

Artificial bee colony (ABC) can effectively solve some complex optimization problems. However, its convergence speed is slow and the exploitation capacity is insufficient at the last search stage. In order to tackle these issues, this paper proposes a modified ABC with an adaptive search manner and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2022-10, Vol.34 (19), p.16239-16253
Hauptverfasser: Ye, Tingyu, Wang, Hui, Wang, Wengjun, Zeng, Tao, Zhang, Luqi, Huang, Zhikai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16253
container_issue 19
container_start_page 16239
container_title Neural computing & applications
container_volume 34
creator Ye, Tingyu
Wang, Hui
Wang, Wengjun
Zeng, Tao
Zhang, Luqi
Huang, Zhikai
description Artificial bee colony (ABC) can effectively solve some complex optimization problems. However, its convergence speed is slow and the exploitation capacity is insufficient at the last search stage. In order to tackle these issues, this paper proposes a modified ABC with an adaptive search manner and dimension perturbation (called ASDABC). There are two important search manners: exploration and exploitation. A suitable search manner is beneficial for the search. An explorative search strategy and another exploitative search strategy are selected to build a strategy pool. To adaptively choose an appropriate search manner, an evaluating indicator is designed to relate the current search status. According to the evaluating indicator, an adaptive method is used to determine which kind of search manner is suitable for the current search. Additionally, a dynamic dimension perturbation strategy is used to enhance the exploration and exploration ability. To verify the performance of ASDABC, 50 problems are tested including 22 classical functions and 28 complex functions. Experiment result shows that ASDABC achieves competitive performance when contrasted with seven different ABC variants.
doi_str_mv 10.1007/s00521-022-06981-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2716764936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716764936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d4cbf9c617894ef7f7d1119d21487ec6c20c60931f8daac9fce41cd8f33085e53</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwFPA8-pkk80mx1J8QcGLHjyFNI82ZTe7JlvFb2-0gjcvMwz_x8APoUsC1wSgvckATU0qqOsKuBSkYkdoRhilFYVGHKMZSFZkzugpOst5BwCMi2aGXhdpCj6YoDu8dg6boRviJ9bdZkhh2vb4o0ysI9ZWj1N4dzg7ncwW9zpGl4pisQ29izkMEY8uTfu01lM5ztGJ1112F797jl7ubp-XD9Xq6f5xuVhVhhI5VZaZtZeGk1ZI5nzrW0sIkbYmTLTOcFOD4SAp8cJqbaQ3jhFjhacUROMaOkdXh94xDW97lye1G_YplpeqbglvOZOUF1d9cJk05JycV2MKvU6fioD6RqgOCFVBqH4QKlZC9BDKxRw3Lv1V_5P6Ap4qdSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716764936</pqid></control><display><type>article</type><title>Artificial bee colony algorithm with an adaptive search manner and dimension perturbation</title><source>SpringerNature Journals</source><creator>Ye, Tingyu ; Wang, Hui ; Wang, Wengjun ; Zeng, Tao ; Zhang, Luqi ; Huang, Zhikai</creator><creatorcontrib>Ye, Tingyu ; Wang, Hui ; Wang, Wengjun ; Zeng, Tao ; Zhang, Luqi ; Huang, Zhikai</creatorcontrib><description>Artificial bee colony (ABC) can effectively solve some complex optimization problems. However, its convergence speed is slow and the exploitation capacity is insufficient at the last search stage. In order to tackle these issues, this paper proposes a modified ABC with an adaptive search manner and dimension perturbation (called ASDABC). There are two important search manners: exploration and exploitation. A suitable search manner is beneficial for the search. An explorative search strategy and another exploitative search strategy are selected to build a strategy pool. To adaptively choose an appropriate search manner, an evaluating indicator is designed to relate the current search status. According to the evaluating indicator, an adaptive method is used to determine which kind of search manner is suitable for the current search. Additionally, a dynamic dimension perturbation strategy is used to enhance the exploration and exploration ability. To verify the performance of ASDABC, 50 problems are tested including 22 classical functions and 28 complex functions. Experiment result shows that ASDABC achieves competitive performance when contrasted with seven different ABC variants.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-06981-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptive algorithms ; Adaptive search techniques ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Exploitation ; Exploration ; Image Processing and Computer Vision ; Optimization ; Optimization algorithms ; Perturbation ; Probability and Statistics in Computer Science ; S.i. : Ncaa 2021 ; Search algorithms ; Search methods ; Special Issue on Neural Computing for Advanced Applications 2021 ; Swarm intelligence</subject><ispartof>Neural computing &amp; applications, 2022-10, Vol.34 (19), p.16239-16253</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d4cbf9c617894ef7f7d1119d21487ec6c20c60931f8daac9fce41cd8f33085e53</citedby><cites>FETCH-LOGICAL-c319t-d4cbf9c617894ef7f7d1119d21487ec6c20c60931f8daac9fce41cd8f33085e53</cites><orcidid>0000-0001-8213-1626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-06981-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-06981-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ye, Tingyu</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Wang, Wengjun</creatorcontrib><creatorcontrib>Zeng, Tao</creatorcontrib><creatorcontrib>Zhang, Luqi</creatorcontrib><creatorcontrib>Huang, Zhikai</creatorcontrib><title>Artificial bee colony algorithm with an adaptive search manner and dimension perturbation</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>Artificial bee colony (ABC) can effectively solve some complex optimization problems. However, its convergence speed is slow and the exploitation capacity is insufficient at the last search stage. In order to tackle these issues, this paper proposes a modified ABC with an adaptive search manner and dimension perturbation (called ASDABC). There are two important search manners: exploration and exploitation. A suitable search manner is beneficial for the search. An explorative search strategy and another exploitative search strategy are selected to build a strategy pool. To adaptively choose an appropriate search manner, an evaluating indicator is designed to relate the current search status. According to the evaluating indicator, an adaptive method is used to determine which kind of search manner is suitable for the current search. Additionally, a dynamic dimension perturbation strategy is used to enhance the exploration and exploration ability. To verify the performance of ASDABC, 50 problems are tested including 22 classical functions and 28 complex functions. Experiment result shows that ASDABC achieves competitive performance when contrasted with seven different ABC variants.</description><subject>Adaptive algorithms</subject><subject>Adaptive search techniques</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Exploitation</subject><subject>Exploration</subject><subject>Image Processing and Computer Vision</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Perturbation</subject><subject>Probability and Statistics in Computer Science</subject><subject>S.i. : Ncaa 2021</subject><subject>Search algorithms</subject><subject>Search methods</subject><subject>Special Issue on Neural Computing for Advanced Applications 2021</subject><subject>Swarm intelligence</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEQx4MoWKtfwFPA8-pkk80mx1J8QcGLHjyFNI82ZTe7JlvFb2-0gjcvMwz_x8APoUsC1wSgvckATU0qqOsKuBSkYkdoRhilFYVGHKMZSFZkzugpOst5BwCMi2aGXhdpCj6YoDu8dg6boRviJ9bdZkhh2vb4o0ysI9ZWj1N4dzg7ncwW9zpGl4pisQ29izkMEY8uTfu01lM5ztGJ1112F797jl7ubp-XD9Xq6f5xuVhVhhI5VZaZtZeGk1ZI5nzrW0sIkbYmTLTOcFOD4SAp8cJqbaQ3jhFjhacUROMaOkdXh94xDW97lye1G_YplpeqbglvOZOUF1d9cJk05JycV2MKvU6fioD6RqgOCFVBqH4QKlZC9BDKxRw3Lv1V_5P6Ap4qdSg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Ye, Tingyu</creator><creator>Wang, Hui</creator><creator>Wang, Wengjun</creator><creator>Zeng, Tao</creator><creator>Zhang, Luqi</creator><creator>Huang, Zhikai</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8213-1626</orcidid></search><sort><creationdate>20221001</creationdate><title>Artificial bee colony algorithm with an adaptive search manner and dimension perturbation</title><author>Ye, Tingyu ; Wang, Hui ; Wang, Wengjun ; Zeng, Tao ; Zhang, Luqi ; Huang, Zhikai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d4cbf9c617894ef7f7d1119d21487ec6c20c60931f8daac9fce41cd8f33085e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive search techniques</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Exploitation</topic><topic>Exploration</topic><topic>Image Processing and Computer Vision</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Perturbation</topic><topic>Probability and Statistics in Computer Science</topic><topic>S.i. : Ncaa 2021</topic><topic>Search algorithms</topic><topic>Search methods</topic><topic>Special Issue on Neural Computing for Advanced Applications 2021</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Tingyu</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Wang, Wengjun</creatorcontrib><creatorcontrib>Zeng, Tao</creatorcontrib><creatorcontrib>Zhang, Luqi</creatorcontrib><creatorcontrib>Huang, Zhikai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Tingyu</au><au>Wang, Hui</au><au>Wang, Wengjun</au><au>Zeng, Tao</au><au>Zhang, Luqi</au><au>Huang, Zhikai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial bee colony algorithm with an adaptive search manner and dimension perturbation</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>34</volume><issue>19</issue><spage>16239</spage><epage>16253</epage><pages>16239-16253</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Artificial bee colony (ABC) can effectively solve some complex optimization problems. However, its convergence speed is slow and the exploitation capacity is insufficient at the last search stage. In order to tackle these issues, this paper proposes a modified ABC with an adaptive search manner and dimension perturbation (called ASDABC). There are two important search manners: exploration and exploitation. A suitable search manner is beneficial for the search. An explorative search strategy and another exploitative search strategy are selected to build a strategy pool. To adaptively choose an appropriate search manner, an evaluating indicator is designed to relate the current search status. According to the evaluating indicator, an adaptive method is used to determine which kind of search manner is suitable for the current search. Additionally, a dynamic dimension perturbation strategy is used to enhance the exploration and exploration ability. To verify the performance of ASDABC, 50 problems are tested including 22 classical functions and 28 complex functions. Experiment result shows that ASDABC achieves competitive performance when contrasted with seven different ABC variants.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-06981-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8213-1626</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2022-10, Vol.34 (19), p.16239-16253
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2716764936
source SpringerNature Journals
subjects Adaptive algorithms
Adaptive search techniques
Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Exploitation
Exploration
Image Processing and Computer Vision
Optimization
Optimization algorithms
Perturbation
Probability and Statistics in Computer Science
S.i. : Ncaa 2021
Search algorithms
Search methods
Special Issue on Neural Computing for Advanced Applications 2021
Swarm intelligence
title Artificial bee colony algorithm with an adaptive search manner and dimension perturbation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20bee%20colony%20algorithm%20with%20an%20adaptive%20search%20manner%20and%20dimension%20perturbation&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Ye,%20Tingyu&rft.date=2022-10-01&rft.volume=34&rft.issue=19&rft.spage=16239&rft.epage=16253&rft.pages=16239-16253&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-06981-4&rft_dat=%3Cproquest_cross%3E2716764936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716764936&rft_id=info:pmid/&rfr_iscdi=true