Artificial bee colony algorithm with an adaptive search manner and dimension perturbation
Artificial bee colony (ABC) can effectively solve some complex optimization problems. However, its convergence speed is slow and the exploitation capacity is insufficient at the last search stage. In order to tackle these issues, this paper proposes a modified ABC with an adaptive search manner and...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2022-10, Vol.34 (19), p.16239-16253 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16253 |
---|---|
container_issue | 19 |
container_start_page | 16239 |
container_title | Neural computing & applications |
container_volume | 34 |
creator | Ye, Tingyu Wang, Hui Wang, Wengjun Zeng, Tao Zhang, Luqi Huang, Zhikai |
description | Artificial bee colony (ABC) can effectively solve some complex optimization problems. However, its convergence speed is slow and the exploitation capacity is insufficient at the last search stage. In order to tackle these issues, this paper proposes a modified ABC with an adaptive search manner and dimension perturbation (called ASDABC). There are two important search manners: exploration and exploitation. A suitable search manner is beneficial for the search. An explorative search strategy and another exploitative search strategy are selected to build a strategy pool. To adaptively choose an appropriate search manner, an evaluating indicator is designed to relate the current search status. According to the evaluating indicator, an adaptive method is used to determine which kind of search manner is suitable for the current search. Additionally, a dynamic dimension perturbation strategy is used to enhance the exploration and exploration ability. To verify the performance of ASDABC, 50 problems are tested including 22 classical functions and 28 complex functions. Experiment result shows that ASDABC achieves competitive performance when contrasted with seven different ABC variants. |
doi_str_mv | 10.1007/s00521-022-06981-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2716764936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716764936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d4cbf9c617894ef7f7d1119d21487ec6c20c60931f8daac9fce41cd8f33085e53</originalsourceid><addsrcrecordid>eNp9kEtLAzEQx4MoWKtfwFPA8-pkk80mx1J8QcGLHjyFNI82ZTe7JlvFb2-0gjcvMwz_x8APoUsC1wSgvckATU0qqOsKuBSkYkdoRhilFYVGHKMZSFZkzugpOst5BwCMi2aGXhdpCj6YoDu8dg6boRviJ9bdZkhh2vb4o0ysI9ZWj1N4dzg7ncwW9zpGl4pisQ29izkMEY8uTfu01lM5ztGJ1112F797jl7ubp-XD9Xq6f5xuVhVhhI5VZaZtZeGk1ZI5nzrW0sIkbYmTLTOcFOD4SAp8cJqbaQ3jhFjhacUROMaOkdXh94xDW97lye1G_YplpeqbglvOZOUF1d9cJk05JycV2MKvU6fioD6RqgOCFVBqH4QKlZC9BDKxRw3Lv1V_5P6Ap4qdSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716764936</pqid></control><display><type>article</type><title>Artificial bee colony algorithm with an adaptive search manner and dimension perturbation</title><source>SpringerNature Journals</source><creator>Ye, Tingyu ; Wang, Hui ; Wang, Wengjun ; Zeng, Tao ; Zhang, Luqi ; Huang, Zhikai</creator><creatorcontrib>Ye, Tingyu ; Wang, Hui ; Wang, Wengjun ; Zeng, Tao ; Zhang, Luqi ; Huang, Zhikai</creatorcontrib><description>Artificial bee colony (ABC) can effectively solve some complex optimization problems. However, its convergence speed is slow and the exploitation capacity is insufficient at the last search stage. In order to tackle these issues, this paper proposes a modified ABC with an adaptive search manner and dimension perturbation (called ASDABC). There are two important search manners: exploration and exploitation. A suitable search manner is beneficial for the search. An explorative search strategy and another exploitative search strategy are selected to build a strategy pool. To adaptively choose an appropriate search manner, an evaluating indicator is designed to relate the current search status. According to the evaluating indicator, an adaptive method is used to determine which kind of search manner is suitable for the current search. Additionally, a dynamic dimension perturbation strategy is used to enhance the exploration and exploration ability. To verify the performance of ASDABC, 50 problems are tested including 22 classical functions and 28 complex functions. Experiment result shows that ASDABC achieves competitive performance when contrasted with seven different ABC variants.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-022-06981-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Adaptive algorithms ; Adaptive search techniques ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Exploitation ; Exploration ; Image Processing and Computer Vision ; Optimization ; Optimization algorithms ; Perturbation ; Probability and Statistics in Computer Science ; S.i. : Ncaa 2021 ; Search algorithms ; Search methods ; Special Issue on Neural Computing for Advanced Applications 2021 ; Swarm intelligence</subject><ispartof>Neural computing & applications, 2022-10, Vol.34 (19), p.16239-16253</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d4cbf9c617894ef7f7d1119d21487ec6c20c60931f8daac9fce41cd8f33085e53</citedby><cites>FETCH-LOGICAL-c319t-d4cbf9c617894ef7f7d1119d21487ec6c20c60931f8daac9fce41cd8f33085e53</cites><orcidid>0000-0001-8213-1626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-022-06981-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-022-06981-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ye, Tingyu</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Wang, Wengjun</creatorcontrib><creatorcontrib>Zeng, Tao</creatorcontrib><creatorcontrib>Zhang, Luqi</creatorcontrib><creatorcontrib>Huang, Zhikai</creatorcontrib><title>Artificial bee colony algorithm with an adaptive search manner and dimension perturbation</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>Artificial bee colony (ABC) can effectively solve some complex optimization problems. However, its convergence speed is slow and the exploitation capacity is insufficient at the last search stage. In order to tackle these issues, this paper proposes a modified ABC with an adaptive search manner and dimension perturbation (called ASDABC). There are two important search manners: exploration and exploitation. A suitable search manner is beneficial for the search. An explorative search strategy and another exploitative search strategy are selected to build a strategy pool. To adaptively choose an appropriate search manner, an evaluating indicator is designed to relate the current search status. According to the evaluating indicator, an adaptive method is used to determine which kind of search manner is suitable for the current search. Additionally, a dynamic dimension perturbation strategy is used to enhance the exploration and exploration ability. To verify the performance of ASDABC, 50 problems are tested including 22 classical functions and 28 complex functions. Experiment result shows that ASDABC achieves competitive performance when contrasted with seven different ABC variants.</description><subject>Adaptive algorithms</subject><subject>Adaptive search techniques</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Exploitation</subject><subject>Exploration</subject><subject>Image Processing and Computer Vision</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Perturbation</subject><subject>Probability and Statistics in Computer Science</subject><subject>S.i. : Ncaa 2021</subject><subject>Search algorithms</subject><subject>Search methods</subject><subject>Special Issue on Neural Computing for Advanced Applications 2021</subject><subject>Swarm intelligence</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kEtLAzEQx4MoWKtfwFPA8-pkk80mx1J8QcGLHjyFNI82ZTe7JlvFb2-0gjcvMwz_x8APoUsC1wSgvckATU0qqOsKuBSkYkdoRhilFYVGHKMZSFZkzugpOst5BwCMi2aGXhdpCj6YoDu8dg6boRviJ9bdZkhh2vb4o0ysI9ZWj1N4dzg7ncwW9zpGl4pisQ29izkMEY8uTfu01lM5ztGJ1112F797jl7ubp-XD9Xq6f5xuVhVhhI5VZaZtZeGk1ZI5nzrW0sIkbYmTLTOcFOD4SAp8cJqbaQ3jhFjhacUROMaOkdXh94xDW97lye1G_YplpeqbglvOZOUF1d9cJk05JycV2MKvU6fioD6RqgOCFVBqH4QKlZC9BDKxRw3Lv1V_5P6Ap4qdSg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Ye, Tingyu</creator><creator>Wang, Hui</creator><creator>Wang, Wengjun</creator><creator>Zeng, Tao</creator><creator>Zhang, Luqi</creator><creator>Huang, Zhikai</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8213-1626</orcidid></search><sort><creationdate>20221001</creationdate><title>Artificial bee colony algorithm with an adaptive search manner and dimension perturbation</title><author>Ye, Tingyu ; Wang, Hui ; Wang, Wengjun ; Zeng, Tao ; Zhang, Luqi ; Huang, Zhikai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d4cbf9c617894ef7f7d1119d21487ec6c20c60931f8daac9fce41cd8f33085e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive search techniques</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Exploitation</topic><topic>Exploration</topic><topic>Image Processing and Computer Vision</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Perturbation</topic><topic>Probability and Statistics in Computer Science</topic><topic>S.i. : Ncaa 2021</topic><topic>Search algorithms</topic><topic>Search methods</topic><topic>Special Issue on Neural Computing for Advanced Applications 2021</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Tingyu</creatorcontrib><creatorcontrib>Wang, Hui</creatorcontrib><creatorcontrib>Wang, Wengjun</creatorcontrib><creatorcontrib>Zeng, Tao</creatorcontrib><creatorcontrib>Zhang, Luqi</creatorcontrib><creatorcontrib>Huang, Zhikai</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Tingyu</au><au>Wang, Hui</au><au>Wang, Wengjun</au><au>Zeng, Tao</au><au>Zhang, Luqi</au><au>Huang, Zhikai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial bee colony algorithm with an adaptive search manner and dimension perturbation</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>34</volume><issue>19</issue><spage>16239</spage><epage>16253</epage><pages>16239-16253</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>Artificial bee colony (ABC) can effectively solve some complex optimization problems. However, its convergence speed is slow and the exploitation capacity is insufficient at the last search stage. In order to tackle these issues, this paper proposes a modified ABC with an adaptive search manner and dimension perturbation (called ASDABC). There are two important search manners: exploration and exploitation. A suitable search manner is beneficial for the search. An explorative search strategy and another exploitative search strategy are selected to build a strategy pool. To adaptively choose an appropriate search manner, an evaluating indicator is designed to relate the current search status. According to the evaluating indicator, an adaptive method is used to determine which kind of search manner is suitable for the current search. Additionally, a dynamic dimension perturbation strategy is used to enhance the exploration and exploration ability. To verify the performance of ASDABC, 50 problems are tested including 22 classical functions and 28 complex functions. Experiment result shows that ASDABC achieves competitive performance when contrasted with seven different ABC variants.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-022-06981-4</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8213-1626</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2022-10, Vol.34 (19), p.16239-16253 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2716764936 |
source | SpringerNature Journals |
subjects | Adaptive algorithms Adaptive search techniques Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Exploitation Exploration Image Processing and Computer Vision Optimization Optimization algorithms Perturbation Probability and Statistics in Computer Science S.i. : Ncaa 2021 Search algorithms Search methods Special Issue on Neural Computing for Advanced Applications 2021 Swarm intelligence |
title | Artificial bee colony algorithm with an adaptive search manner and dimension perturbation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A58%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20bee%20colony%20algorithm%20with%20an%20adaptive%20search%20manner%20and%20dimension%20perturbation&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Ye,%20Tingyu&rft.date=2022-10-01&rft.volume=34&rft.issue=19&rft.spage=16239&rft.epage=16253&rft.pages=16239-16253&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-022-06981-4&rft_dat=%3Cproquest_cross%3E2716764936%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716764936&rft_id=info:pmid/&rfr_iscdi=true |