Numerical Investigation of Natural Convection in an Open-Ended Square Channel with Two Suspending Heat Sources
Passive heat dissipation cooling technologies based on natural convection in open channels can effectively control the maximum temperature and improve the temperature homogeneity of 5G base stations, data centers and other equipment. In this paper, the flow and heat transfer of natural convection in...
Gespeichert in:
Veröffentlicht in: | Processes 2022-09, Vol.10 (9), p.1774 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 1774 |
container_title | Processes |
container_volume | 10 |
creator | Liu, Qi Xu, Xingrong Liang, Peng Xia, Junjie Li, Wen-Peng Li, Gu-Yuan Yu, Jia-Jia |
description | Passive heat dissipation cooling technologies based on natural convection in open channels can effectively control the maximum temperature and improve the temperature homogeneity of 5G base stations, data centers and other equipment. In this paper, the flow and heat transfer of natural convection in an open-ended square channel with two suspending heat sources are studied through numerical simulation. The distributions of the temperature field and flow field in the channel with different horizontal distances and vertical altitude differenced of the heat sources are acquired via the finite element method (FEM)-based COMSOL Multiphysics. The changes in local temperature and the local Nusselt number are obtained. The relationships between the temperature field, flow field, and Nusselt number with respect to the geometric parameters of the heat sources are discussed. With different geometric parameters of the two suspending heat sources, the average surface temperature at the bottom is always lower than the top, while the average Nusselt number reaches maximum and minimum values at the bottom and top surfaces, respectively. As the horizontal distance increases, the maximum vertical airflow velocity decreases. The average surface temperature and local Nusselt number go through a V-shape and reverse V-shape tendency, respectively. The maximum temperature at the surface of the heat source is 397 K at a horizontal distance of 0.36 m. The local Nusselt number on the side of the heat source reaches its maximum at a horizontal distance of 0.28 m with an average value of 33.5. As the vertical altitude difference increases, the temperature difference between the heat sources increases from 0 K to 54 K, and the maximum vertical airflow velocity goes through a reverse V-shape tendency. The Nusselt number of the right heat source decreases to a certain value of about 20, while that of the left heat source goes through a fluctuating tendency. The results show that the best arrangement of the heat sources is a vertical altitude difference of 0 m and a horizontal distance of 0.28 m. |
doi_str_mv | 10.3390/pr10091774 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2716588422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744992800</galeid><sourcerecordid>A744992800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-ef1c4fc1bcc564590de3926be276e462a121e0f6319ec30df04a56a646bfb9c93</originalsourceid><addsrcrecordid>eNpNUV1rwjAULWODyebLfkFgb4O6fDVtHkXcFEQfdM8lTW80UhNN28n-_eIcbNyHeznn3C9OkjwRPGJM4tdjIBhLkuf8JhlQSvNU5iS__VffJ8O23WN8kbEiE4PELfsDBKtVg-buE9rOblVnvUPeoKXq-hCJiY-M_kGtQ8qh1RFcOnU11Gh96lUANNkp56BBZ9vt0Obs0bpvo6i2botmoDq09n3Q0D4md0Y1LQx_80Py8TbdTGbpYvU-n4wXqWaMdykYornRpNI6EzyTuAYmqaiA5gK4oIpQAtgIRiRohmuDucqEElxUppJasofk-Tr3GPypj2-V-3iAiytLmhORFQWnNKpGV9VWNVBaZ3wXlI5Rw8Fq78DYiI9zzqWkBcax4eXaoINv2wCmPAZ7UOGrJLi8eFD-ecC-AUn-eU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716588422</pqid></control><display><type>article</type><title>Numerical Investigation of Natural Convection in an Open-Ended Square Channel with Two Suspending Heat Sources</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Liu, Qi ; Xu, Xingrong ; Liang, Peng ; Xia, Junjie ; Li, Wen-Peng ; Li, Gu-Yuan ; Yu, Jia-Jia</creator><creatorcontrib>Liu, Qi ; Xu, Xingrong ; Liang, Peng ; Xia, Junjie ; Li, Wen-Peng ; Li, Gu-Yuan ; Yu, Jia-Jia</creatorcontrib><description>Passive heat dissipation cooling technologies based on natural convection in open channels can effectively control the maximum temperature and improve the temperature homogeneity of 5G base stations, data centers and other equipment. In this paper, the flow and heat transfer of natural convection in an open-ended square channel with two suspending heat sources are studied through numerical simulation. The distributions of the temperature field and flow field in the channel with different horizontal distances and vertical altitude differenced of the heat sources are acquired via the finite element method (FEM)-based COMSOL Multiphysics. The changes in local temperature and the local Nusselt number are obtained. The relationships between the temperature field, flow field, and Nusselt number with respect to the geometric parameters of the heat sources are discussed. With different geometric parameters of the two suspending heat sources, the average surface temperature at the bottom is always lower than the top, while the average Nusselt number reaches maximum and minimum values at the bottom and top surfaces, respectively. As the horizontal distance increases, the maximum vertical airflow velocity decreases. The average surface temperature and local Nusselt number go through a V-shape and reverse V-shape tendency, respectively. The maximum temperature at the surface of the heat source is 397 K at a horizontal distance of 0.36 m. The local Nusselt number on the side of the heat source reaches its maximum at a horizontal distance of 0.28 m with an average value of 33.5. As the vertical altitude difference increases, the temperature difference between the heat sources increases from 0 K to 54 K, and the maximum vertical airflow velocity goes through a reverse V-shape tendency. The Nusselt number of the right heat source decreases to a certain value of about 20, while that of the left heat source goes through a fluctuating tendency. The results show that the best arrangement of the heat sources is a vertical altitude difference of 0 m and a horizontal distance of 0.28 m.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr10091774</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Air flow ; Altitude ; Atmospheric pressure ; Computer centers ; Convection ; Convection cooling ; Cooling ; Data centers ; Finite element method ; Fluid flow ; Free convection ; Heat sources ; Heat transfer ; Homogeneity ; Investigations ; Mathematical models ; Numerical analysis ; Nusselt number ; Open channels ; Parameters ; Rayleigh number ; Shape ; Simulation methods ; Surface temperature ; Temperature distribution ; Temperature gradients ; Velocity ; Wireless telecommunications equipment</subject><ispartof>Processes, 2022-09, Vol.10 (9), p.1774</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-ef1c4fc1bcc564590de3926be276e462a121e0f6319ec30df04a56a646bfb9c93</citedby><cites>FETCH-LOGICAL-c334t-ef1c4fc1bcc564590de3926be276e462a121e0f6319ec30df04a56a646bfb9c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Xu, Xingrong</creatorcontrib><creatorcontrib>Liang, Peng</creatorcontrib><creatorcontrib>Xia, Junjie</creatorcontrib><creatorcontrib>Li, Wen-Peng</creatorcontrib><creatorcontrib>Li, Gu-Yuan</creatorcontrib><creatorcontrib>Yu, Jia-Jia</creatorcontrib><title>Numerical Investigation of Natural Convection in an Open-Ended Square Channel with Two Suspending Heat Sources</title><title>Processes</title><description>Passive heat dissipation cooling technologies based on natural convection in open channels can effectively control the maximum temperature and improve the temperature homogeneity of 5G base stations, data centers and other equipment. In this paper, the flow and heat transfer of natural convection in an open-ended square channel with two suspending heat sources are studied through numerical simulation. The distributions of the temperature field and flow field in the channel with different horizontal distances and vertical altitude differenced of the heat sources are acquired via the finite element method (FEM)-based COMSOL Multiphysics. The changes in local temperature and the local Nusselt number are obtained. The relationships between the temperature field, flow field, and Nusselt number with respect to the geometric parameters of the heat sources are discussed. With different geometric parameters of the two suspending heat sources, the average surface temperature at the bottom is always lower than the top, while the average Nusselt number reaches maximum and minimum values at the bottom and top surfaces, respectively. As the horizontal distance increases, the maximum vertical airflow velocity decreases. The average surface temperature and local Nusselt number go through a V-shape and reverse V-shape tendency, respectively. The maximum temperature at the surface of the heat source is 397 K at a horizontal distance of 0.36 m. The local Nusselt number on the side of the heat source reaches its maximum at a horizontal distance of 0.28 m with an average value of 33.5. As the vertical altitude difference increases, the temperature difference between the heat sources increases from 0 K to 54 K, and the maximum vertical airflow velocity goes through a reverse V-shape tendency. The Nusselt number of the right heat source decreases to a certain value of about 20, while that of the left heat source goes through a fluctuating tendency. The results show that the best arrangement of the heat sources is a vertical altitude difference of 0 m and a horizontal distance of 0.28 m.</description><subject>Air flow</subject><subject>Altitude</subject><subject>Atmospheric pressure</subject><subject>Computer centers</subject><subject>Convection</subject><subject>Convection cooling</subject><subject>Cooling</subject><subject>Data centers</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Heat sources</subject><subject>Heat transfer</subject><subject>Homogeneity</subject><subject>Investigations</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Nusselt number</subject><subject>Open channels</subject><subject>Parameters</subject><subject>Rayleigh number</subject><subject>Shape</subject><subject>Simulation methods</subject><subject>Surface temperature</subject><subject>Temperature distribution</subject><subject>Temperature gradients</subject><subject>Velocity</subject><subject>Wireless telecommunications equipment</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUV1rwjAULWODyebLfkFgb4O6fDVtHkXcFEQfdM8lTW80UhNN28n-_eIcbNyHeznn3C9OkjwRPGJM4tdjIBhLkuf8JhlQSvNU5iS__VffJ8O23WN8kbEiE4PELfsDBKtVg-buE9rOblVnvUPeoKXq-hCJiY-M_kGtQ8qh1RFcOnU11Gh96lUANNkp56BBZ9vt0Obs0bpvo6i2botmoDq09n3Q0D4md0Y1LQx_80Py8TbdTGbpYvU-n4wXqWaMdykYornRpNI6EzyTuAYmqaiA5gK4oIpQAtgIRiRohmuDucqEElxUppJasofk-Tr3GPypj2-V-3iAiytLmhORFQWnNKpGV9VWNVBaZ3wXlI5Rw8Fq78DYiI9zzqWkBcax4eXaoINv2wCmPAZ7UOGrJLi8eFD-ecC-AUn-eU8</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Liu, Qi</creator><creator>Xu, Xingrong</creator><creator>Liang, Peng</creator><creator>Xia, Junjie</creator><creator>Li, Wen-Peng</creator><creator>Li, Gu-Yuan</creator><creator>Yu, Jia-Jia</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20220901</creationdate><title>Numerical Investigation of Natural Convection in an Open-Ended Square Channel with Two Suspending Heat Sources</title><author>Liu, Qi ; Xu, Xingrong ; Liang, Peng ; Xia, Junjie ; Li, Wen-Peng ; Li, Gu-Yuan ; Yu, Jia-Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-ef1c4fc1bcc564590de3926be276e462a121e0f6319ec30df04a56a646bfb9c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air flow</topic><topic>Altitude</topic><topic>Atmospheric pressure</topic><topic>Computer centers</topic><topic>Convection</topic><topic>Convection cooling</topic><topic>Cooling</topic><topic>Data centers</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Heat sources</topic><topic>Heat transfer</topic><topic>Homogeneity</topic><topic>Investigations</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Nusselt number</topic><topic>Open channels</topic><topic>Parameters</topic><topic>Rayleigh number</topic><topic>Shape</topic><topic>Simulation methods</topic><topic>Surface temperature</topic><topic>Temperature distribution</topic><topic>Temperature gradients</topic><topic>Velocity</topic><topic>Wireless telecommunications equipment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Xu, Xingrong</creatorcontrib><creatorcontrib>Liang, Peng</creatorcontrib><creatorcontrib>Xia, Junjie</creatorcontrib><creatorcontrib>Li, Wen-Peng</creatorcontrib><creatorcontrib>Li, Gu-Yuan</creatorcontrib><creatorcontrib>Yu, Jia-Jia</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qi</au><au>Xu, Xingrong</au><au>Liang, Peng</au><au>Xia, Junjie</au><au>Li, Wen-Peng</au><au>Li, Gu-Yuan</au><au>Yu, Jia-Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Investigation of Natural Convection in an Open-Ended Square Channel with Two Suspending Heat Sources</atitle><jtitle>Processes</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>10</volume><issue>9</issue><spage>1774</spage><pages>1774-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>Passive heat dissipation cooling technologies based on natural convection in open channels can effectively control the maximum temperature and improve the temperature homogeneity of 5G base stations, data centers and other equipment. In this paper, the flow and heat transfer of natural convection in an open-ended square channel with two suspending heat sources are studied through numerical simulation. The distributions of the temperature field and flow field in the channel with different horizontal distances and vertical altitude differenced of the heat sources are acquired via the finite element method (FEM)-based COMSOL Multiphysics. The changes in local temperature and the local Nusselt number are obtained. The relationships between the temperature field, flow field, and Nusselt number with respect to the geometric parameters of the heat sources are discussed. With different geometric parameters of the two suspending heat sources, the average surface temperature at the bottom is always lower than the top, while the average Nusselt number reaches maximum and minimum values at the bottom and top surfaces, respectively. As the horizontal distance increases, the maximum vertical airflow velocity decreases. The average surface temperature and local Nusselt number go through a V-shape and reverse V-shape tendency, respectively. The maximum temperature at the surface of the heat source is 397 K at a horizontal distance of 0.36 m. The local Nusselt number on the side of the heat source reaches its maximum at a horizontal distance of 0.28 m with an average value of 33.5. As the vertical altitude difference increases, the temperature difference between the heat sources increases from 0 K to 54 K, and the maximum vertical airflow velocity goes through a reverse V-shape tendency. The Nusselt number of the right heat source decreases to a certain value of about 20, while that of the left heat source goes through a fluctuating tendency. The results show that the best arrangement of the heat sources is a vertical altitude difference of 0 m and a horizontal distance of 0.28 m.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr10091774</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2022-09, Vol.10 (9), p.1774 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2716588422 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Air flow Altitude Atmospheric pressure Computer centers Convection Convection cooling Cooling Data centers Finite element method Fluid flow Free convection Heat sources Heat transfer Homogeneity Investigations Mathematical models Numerical analysis Nusselt number Open channels Parameters Rayleigh number Shape Simulation methods Surface temperature Temperature distribution Temperature gradients Velocity Wireless telecommunications equipment |
title | Numerical Investigation of Natural Convection in an Open-Ended Square Channel with Two Suspending Heat Sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A04%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Investigation%20of%20Natural%20Convection%20in%20an%20Open-Ended%20Square%20Channel%20with%20Two%20Suspending%20Heat%20Sources&rft.jtitle=Processes&rft.au=Liu,%20Qi&rft.date=2022-09-01&rft.volume=10&rft.issue=9&rft.spage=1774&rft.pages=1774-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr10091774&rft_dat=%3Cgale_proqu%3EA744992800%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716588422&rft_id=info:pmid/&rft_galeid=A744992800&rfr_iscdi=true |