Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments

Code and data sharing are crucial practices to advance toward sustainable archaeology. This article explores the performance of supervised machine learning classification methods for provenancing archaeological pottery through the use of freeware R code in the form of R Markdown files. An illustrati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-09, Vol.14 (18), p.11214
Hauptverfasser: Anglisano, Anna, Casas, Lluís, Queralt, Ignasi, Di Febo, Roberta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 11214
container_title Sustainability
container_volume 14
creator Anglisano, Anna
Casas, Lluís
Queralt, Ignasi
Di Febo, Roberta
description Code and data sharing are crucial practices to advance toward sustainable archaeology. This article explores the performance of supervised machine learning classification methods for provenancing archaeological pottery through the use of freeware R code in the form of R Markdown files. An illustrative example was used to show all the steps of the new methodology, starting from the requirements to its implementation, the verification of its classification capability and finally, the production of cluster predictions. The example confirms that supervised methods are able to distinguish classes with similar features, and provenancing is achievable. The provided code contains self-explanatory notes to guide the users through the classification algorithms. Archaeometrists without previous knowledge of R should be able to apply the novel methodology to similar well-constrained classification problems. Experienced users could fully exploit the code to set up different combinations of parameters, and they could further develop it by adding other classification algorithms to suit the requirements of diverse classification strategies.
doi_str_mv 10.3390/su141811214
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2716586816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746960742</galeid><sourcerecordid>A746960742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-392e108faa7e1c84dc34783b86545e4319c897dbeff6664d2d6ff0dfcdc744de3</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhhdRUGpP_oGAJ5FqskmT3WMRq4WKxY_zGpPJNrKb1CRb9N8bqQc7c5hheN6Zgbcozgi-orTG13EgjFSElIQdFCclFmRC8BQf_uuPi3GMHzgHpaQm_KR4ex42ELY2gkYPUq2tA7QEGZx1LZp1rQ82rfuIkkerANqqlKvfgpNOAfIGzYJaS_Cdb62SHVr5lCB8o3mQbQ8uxdPiyMguwvivjorX-e3Lzf1k-Xi3uJktJ4oKkia0LoHgykgpgKiKaUWZqOh7xadsCix_q6pa6HcwhnPOdKm5MVgbpZVgTAMdFee7vZvgPweIqfnwQ3D5ZFMKwqcVrwjP1NWOamUHjXXGpyBVTg29Vd6BsXk-E4zXHAtWZsHFniAzCb5SK4cYm8Xz0z57uWNV8DEGMM0m2F6G74bg5tei5p9F9Ae9CYND</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716586816</pqid></control><display><type>article</type><title>Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Anglisano, Anna ; Casas, Lluís ; Queralt, Ignasi ; Di Febo, Roberta</creator><creatorcontrib>Anglisano, Anna ; Casas, Lluís ; Queralt, Ignasi ; Di Febo, Roberta</creatorcontrib><description>Code and data sharing are crucial practices to advance toward sustainable archaeology. This article explores the performance of supervised machine learning classification methods for provenancing archaeological pottery through the use of freeware R code in the form of R Markdown files. An illustrative example was used to show all the steps of the new methodology, starting from the requirements to its implementation, the verification of its classification capability and finally, the production of cluster predictions. The example confirms that supervised methods are able to distinguish classes with similar features, and provenancing is achievable. The provided code contains self-explanatory notes to guide the users through the classification algorithms. Archaeometrists without previous knowledge of R should be able to apply the novel methodology to similar well-constrained classification problems. Experienced users could fully exploit the code to set up different combinations of parameters, and they could further develop it by adding other classification algorithms to suit the requirements of diverse classification strategies.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su141811214</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Archaeology ; Ceramics ; Classification ; Clay ; Clustering ; Data mining ; Data retrieval ; Datasets ; Evaluation ; Historic buildings &amp; sites ; Learning algorithms ; Machine learning ; Performance evaluation ; Pottery ; Provenance ; Sustainability ; Sustainable development ; Technology application</subject><ispartof>Sustainability, 2022-09, Vol.14 (18), p.11214</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-392e108faa7e1c84dc34783b86545e4319c897dbeff6664d2d6ff0dfcdc744de3</citedby><cites>FETCH-LOGICAL-c371t-392e108faa7e1c84dc34783b86545e4319c897dbeff6664d2d6ff0dfcdc744de3</cites><orcidid>0000-0002-1102-8231 ; 0000-0002-8790-8382 ; 0000-0003-0149-7488 ; 0000-0003-0948-8658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Anglisano, Anna</creatorcontrib><creatorcontrib>Casas, Lluís</creatorcontrib><creatorcontrib>Queralt, Ignasi</creatorcontrib><creatorcontrib>Di Febo, Roberta</creatorcontrib><title>Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments</title><title>Sustainability</title><description>Code and data sharing are crucial practices to advance toward sustainable archaeology. This article explores the performance of supervised machine learning classification methods for provenancing archaeological pottery through the use of freeware R code in the form of R Markdown files. An illustrative example was used to show all the steps of the new methodology, starting from the requirements to its implementation, the verification of its classification capability and finally, the production of cluster predictions. The example confirms that supervised methods are able to distinguish classes with similar features, and provenancing is achievable. The provided code contains self-explanatory notes to guide the users through the classification algorithms. Archaeometrists without previous knowledge of R should be able to apply the novel methodology to similar well-constrained classification problems. Experienced users could fully exploit the code to set up different combinations of parameters, and they could further develop it by adding other classification algorithms to suit the requirements of diverse classification strategies.</description><subject>Algorithms</subject><subject>Archaeology</subject><subject>Ceramics</subject><subject>Classification</subject><subject>Clay</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Data retrieval</subject><subject>Datasets</subject><subject>Evaluation</subject><subject>Historic buildings &amp; sites</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Pottery</subject><subject>Provenance</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Technology application</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkU1LAzEQhhdRUGpP_oGAJ5FqskmT3WMRq4WKxY_zGpPJNrKb1CRb9N8bqQc7c5hheN6Zgbcozgi-orTG13EgjFSElIQdFCclFmRC8BQf_uuPi3GMHzgHpaQm_KR4ex42ELY2gkYPUq2tA7QEGZx1LZp1rQ82rfuIkkerANqqlKvfgpNOAfIGzYJaS_Cdb62SHVr5lCB8o3mQbQ8uxdPiyMguwvivjorX-e3Lzf1k-Xi3uJktJ4oKkia0LoHgykgpgKiKaUWZqOh7xadsCix_q6pa6HcwhnPOdKm5MVgbpZVgTAMdFee7vZvgPweIqfnwQ3D5ZFMKwqcVrwjP1NWOamUHjXXGpyBVTg29Vd6BsXk-E4zXHAtWZsHFniAzCb5SK4cYm8Xz0z57uWNV8DEGMM0m2F6G74bg5tei5p9F9Ae9CYND</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Anglisano, Anna</creator><creator>Casas, Lluís</creator><creator>Queralt, Ignasi</creator><creator>Di Febo, Roberta</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1102-8231</orcidid><orcidid>https://orcid.org/0000-0002-8790-8382</orcidid><orcidid>https://orcid.org/0000-0003-0149-7488</orcidid><orcidid>https://orcid.org/0000-0003-0948-8658</orcidid></search><sort><creationdate>20220901</creationdate><title>Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments</title><author>Anglisano, Anna ; Casas, Lluís ; Queralt, Ignasi ; Di Febo, Roberta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-392e108faa7e1c84dc34783b86545e4319c897dbeff6664d2d6ff0dfcdc744de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Archaeology</topic><topic>Ceramics</topic><topic>Classification</topic><topic>Clay</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Data retrieval</topic><topic>Datasets</topic><topic>Evaluation</topic><topic>Historic buildings &amp; sites</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Pottery</topic><topic>Provenance</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anglisano, Anna</creatorcontrib><creatorcontrib>Casas, Lluís</creatorcontrib><creatorcontrib>Queralt, Ignasi</creatorcontrib><creatorcontrib>Di Febo, Roberta</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anglisano, Anna</au><au>Casas, Lluís</au><au>Queralt, Ignasi</au><au>Di Febo, Roberta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments</atitle><jtitle>Sustainability</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>14</volume><issue>18</issue><spage>11214</spage><pages>11214-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Code and data sharing are crucial practices to advance toward sustainable archaeology. This article explores the performance of supervised machine learning classification methods for provenancing archaeological pottery through the use of freeware R code in the form of R Markdown files. An illustrative example was used to show all the steps of the new methodology, starting from the requirements to its implementation, the verification of its classification capability and finally, the production of cluster predictions. The example confirms that supervised methods are able to distinguish classes with similar features, and provenancing is achievable. The provided code contains self-explanatory notes to guide the users through the classification algorithms. Archaeometrists without previous knowledge of R should be able to apply the novel methodology to similar well-constrained classification problems. Experienced users could fully exploit the code to set up different combinations of parameters, and they could further develop it by adding other classification algorithms to suit the requirements of diverse classification strategies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su141811214</doi><orcidid>https://orcid.org/0000-0002-1102-8231</orcidid><orcidid>https://orcid.org/0000-0002-8790-8382</orcidid><orcidid>https://orcid.org/0000-0003-0149-7488</orcidid><orcidid>https://orcid.org/0000-0003-0948-8658</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2022-09, Vol.14 (18), p.11214
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2716586816
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Archaeology
Ceramics
Classification
Clay
Clustering
Data mining
Data retrieval
Datasets
Evaluation
Historic buildings & sites
Learning algorithms
Machine learning
Performance evaluation
Pottery
Provenance
Sustainability
Sustainable development
Technology application
title Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Machine%20Learning%20Algorithms%20to%20Predict%20Provenance%20of%20Archaeological%20Pottery%20Fragments&rft.jtitle=Sustainability&rft.au=Anglisano,%20Anna&rft.date=2022-09-01&rft.volume=14&rft.issue=18&rft.spage=11214&rft.pages=11214-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su141811214&rft_dat=%3Cgale_proqu%3EA746960742%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716586816&rft_id=info:pmid/&rft_galeid=A746960742&rfr_iscdi=true