Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments
Code and data sharing are crucial practices to advance toward sustainable archaeology. This article explores the performance of supervised machine learning classification methods for provenancing archaeological pottery through the use of freeware R code in the form of R Markdown files. An illustrati...
Gespeichert in:
Veröffentlicht in: | Sustainability 2022-09, Vol.14 (18), p.11214 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | 11214 |
container_title | Sustainability |
container_volume | 14 |
creator | Anglisano, Anna Casas, Lluís Queralt, Ignasi Di Febo, Roberta |
description | Code and data sharing are crucial practices to advance toward sustainable archaeology. This article explores the performance of supervised machine learning classification methods for provenancing archaeological pottery through the use of freeware R code in the form of R Markdown files. An illustrative example was used to show all the steps of the new methodology, starting from the requirements to its implementation, the verification of its classification capability and finally, the production of cluster predictions. The example confirms that supervised methods are able to distinguish classes with similar features, and provenancing is achievable. The provided code contains self-explanatory notes to guide the users through the classification algorithms. Archaeometrists without previous knowledge of R should be able to apply the novel methodology to similar well-constrained classification problems. Experienced users could fully exploit the code to set up different combinations of parameters, and they could further develop it by adding other classification algorithms to suit the requirements of diverse classification strategies. |
doi_str_mv | 10.3390/su141811214 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2716586816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A746960742</galeid><sourcerecordid>A746960742</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-392e108faa7e1c84dc34783b86545e4319c897dbeff6664d2d6ff0dfcdc744de3</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhhdRUGpP_oGAJ5FqskmT3WMRq4WKxY_zGpPJNrKb1CRb9N8bqQc7c5hheN6Zgbcozgi-orTG13EgjFSElIQdFCclFmRC8BQf_uuPi3GMHzgHpaQm_KR4ex42ELY2gkYPUq2tA7QEGZx1LZp1rQ82rfuIkkerANqqlKvfgpNOAfIGzYJaS_Cdb62SHVr5lCB8o3mQbQ8uxdPiyMguwvivjorX-e3Lzf1k-Xi3uJktJ4oKkia0LoHgykgpgKiKaUWZqOh7xadsCix_q6pa6HcwhnPOdKm5MVgbpZVgTAMdFee7vZvgPweIqfnwQ3D5ZFMKwqcVrwjP1NWOamUHjXXGpyBVTg29Vd6BsXk-E4zXHAtWZsHFniAzCb5SK4cYm8Xz0z57uWNV8DEGMM0m2F6G74bg5tei5p9F9Ae9CYND</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716586816</pqid></control><display><type>article</type><title>Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Anglisano, Anna ; Casas, Lluís ; Queralt, Ignasi ; Di Febo, Roberta</creator><creatorcontrib>Anglisano, Anna ; Casas, Lluís ; Queralt, Ignasi ; Di Febo, Roberta</creatorcontrib><description>Code and data sharing are crucial practices to advance toward sustainable archaeology. This article explores the performance of supervised machine learning classification methods for provenancing archaeological pottery through the use of freeware R code in the form of R Markdown files. An illustrative example was used to show all the steps of the new methodology, starting from the requirements to its implementation, the verification of its classification capability and finally, the production of cluster predictions. The example confirms that supervised methods are able to distinguish classes with similar features, and provenancing is achievable. The provided code contains self-explanatory notes to guide the users through the classification algorithms. Archaeometrists without previous knowledge of R should be able to apply the novel methodology to similar well-constrained classification problems. Experienced users could fully exploit the code to set up different combinations of parameters, and they could further develop it by adding other classification algorithms to suit the requirements of diverse classification strategies.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su141811214</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Archaeology ; Ceramics ; Classification ; Clay ; Clustering ; Data mining ; Data retrieval ; Datasets ; Evaluation ; Historic buildings & sites ; Learning algorithms ; Machine learning ; Performance evaluation ; Pottery ; Provenance ; Sustainability ; Sustainable development ; Technology application</subject><ispartof>Sustainability, 2022-09, Vol.14 (18), p.11214</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-392e108faa7e1c84dc34783b86545e4319c897dbeff6664d2d6ff0dfcdc744de3</citedby><cites>FETCH-LOGICAL-c371t-392e108faa7e1c84dc34783b86545e4319c897dbeff6664d2d6ff0dfcdc744de3</cites><orcidid>0000-0002-1102-8231 ; 0000-0002-8790-8382 ; 0000-0003-0149-7488 ; 0000-0003-0948-8658</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Anglisano, Anna</creatorcontrib><creatorcontrib>Casas, Lluís</creatorcontrib><creatorcontrib>Queralt, Ignasi</creatorcontrib><creatorcontrib>Di Febo, Roberta</creatorcontrib><title>Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments</title><title>Sustainability</title><description>Code and data sharing are crucial practices to advance toward sustainable archaeology. This article explores the performance of supervised machine learning classification methods for provenancing archaeological pottery through the use of freeware R code in the form of R Markdown files. An illustrative example was used to show all the steps of the new methodology, starting from the requirements to its implementation, the verification of its classification capability and finally, the production of cluster predictions. The example confirms that supervised methods are able to distinguish classes with similar features, and provenancing is achievable. The provided code contains self-explanatory notes to guide the users through the classification algorithms. Archaeometrists without previous knowledge of R should be able to apply the novel methodology to similar well-constrained classification problems. Experienced users could fully exploit the code to set up different combinations of parameters, and they could further develop it by adding other classification algorithms to suit the requirements of diverse classification strategies.</description><subject>Algorithms</subject><subject>Archaeology</subject><subject>Ceramics</subject><subject>Classification</subject><subject>Clay</subject><subject>Clustering</subject><subject>Data mining</subject><subject>Data retrieval</subject><subject>Datasets</subject><subject>Evaluation</subject><subject>Historic buildings & sites</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Performance evaluation</subject><subject>Pottery</subject><subject>Provenance</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Technology application</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkU1LAzEQhhdRUGpP_oGAJ5FqskmT3WMRq4WKxY_zGpPJNrKb1CRb9N8bqQc7c5hheN6Zgbcozgi-orTG13EgjFSElIQdFCclFmRC8BQf_uuPi3GMHzgHpaQm_KR4ex42ELY2gkYPUq2tA7QEGZx1LZp1rQ82rfuIkkerANqqlKvfgpNOAfIGzYJaS_Cdb62SHVr5lCB8o3mQbQ8uxdPiyMguwvivjorX-e3Lzf1k-Xi3uJktJ4oKkia0LoHgykgpgKiKaUWZqOh7xadsCix_q6pa6HcwhnPOdKm5MVgbpZVgTAMdFee7vZvgPweIqfnwQ3D5ZFMKwqcVrwjP1NWOamUHjXXGpyBVTg29Vd6BsXk-E4zXHAtWZsHFniAzCb5SK4cYm8Xz0z57uWNV8DEGMM0m2F6G74bg5tei5p9F9Ae9CYND</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Anglisano, Anna</creator><creator>Casas, Lluís</creator><creator>Queralt, Ignasi</creator><creator>Di Febo, Roberta</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-1102-8231</orcidid><orcidid>https://orcid.org/0000-0002-8790-8382</orcidid><orcidid>https://orcid.org/0000-0003-0149-7488</orcidid><orcidid>https://orcid.org/0000-0003-0948-8658</orcidid></search><sort><creationdate>20220901</creationdate><title>Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments</title><author>Anglisano, Anna ; Casas, Lluís ; Queralt, Ignasi ; Di Febo, Roberta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-392e108faa7e1c84dc34783b86545e4319c897dbeff6664d2d6ff0dfcdc744de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Archaeology</topic><topic>Ceramics</topic><topic>Classification</topic><topic>Clay</topic><topic>Clustering</topic><topic>Data mining</topic><topic>Data retrieval</topic><topic>Datasets</topic><topic>Evaluation</topic><topic>Historic buildings & sites</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Performance evaluation</topic><topic>Pottery</topic><topic>Provenance</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anglisano, Anna</creatorcontrib><creatorcontrib>Casas, Lluís</creatorcontrib><creatorcontrib>Queralt, Ignasi</creatorcontrib><creatorcontrib>Di Febo, Roberta</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anglisano, Anna</au><au>Casas, Lluís</au><au>Queralt, Ignasi</au><au>Di Febo, Roberta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments</atitle><jtitle>Sustainability</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>14</volume><issue>18</issue><spage>11214</spage><pages>11214-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Code and data sharing are crucial practices to advance toward sustainable archaeology. This article explores the performance of supervised machine learning classification methods for provenancing archaeological pottery through the use of freeware R code in the form of R Markdown files. An illustrative example was used to show all the steps of the new methodology, starting from the requirements to its implementation, the verification of its classification capability and finally, the production of cluster predictions. The example confirms that supervised methods are able to distinguish classes with similar features, and provenancing is achievable. The provided code contains self-explanatory notes to guide the users through the classification algorithms. Archaeometrists without previous knowledge of R should be able to apply the novel methodology to similar well-constrained classification problems. Experienced users could fully exploit the code to set up different combinations of parameters, and they could further develop it by adding other classification algorithms to suit the requirements of diverse classification strategies.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su141811214</doi><orcidid>https://orcid.org/0000-0002-1102-8231</orcidid><orcidid>https://orcid.org/0000-0002-8790-8382</orcidid><orcidid>https://orcid.org/0000-0003-0149-7488</orcidid><orcidid>https://orcid.org/0000-0003-0948-8658</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2022-09, Vol.14 (18), p.11214 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2716586816 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Archaeology Ceramics Classification Clay Clustering Data mining Data retrieval Datasets Evaluation Historic buildings & sites Learning algorithms Machine learning Performance evaluation Pottery Provenance Sustainability Sustainable development Technology application |
title | Supervised Machine Learning Algorithms to Predict Provenance of Archaeological Pottery Fragments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A07%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20Machine%20Learning%20Algorithms%20to%20Predict%20Provenance%20of%20Archaeological%20Pottery%20Fragments&rft.jtitle=Sustainability&rft.au=Anglisano,%20Anna&rft.date=2022-09-01&rft.volume=14&rft.issue=18&rft.spage=11214&rft.pages=11214-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su141811214&rft_dat=%3Cgale_proqu%3EA746960742%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716586816&rft_id=info:pmid/&rft_galeid=A746960742&rfr_iscdi=true |