Numerical Simulation of Preheating Temperature on Molten Pool Dynamics in Laser Deep-Penetration Welding

In this paper, a heat-flow coupling model of laser welding at preheating temperature was established by the FLUENT 19.0 software. The fluctuation of the keyhole wall and melt flow behavior in the molten pool under different preheating temperatures were analyzed, and the correlation between keyhole w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2022-09, Vol.12 (9), p.1280
Hauptverfasser: Peng, Jin, Liu, Jigao, Yang, Xiaohong, Ge, Jianya, Han, Peng, Wang, Xingxing, Li, Shuai, Wang, Yongbiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1280
container_title Coatings (Basel)
container_volume 12
creator Peng, Jin
Liu, Jigao
Yang, Xiaohong
Ge, Jianya
Han, Peng
Wang, Xingxing
Li, Shuai
Wang, Yongbiao
description In this paper, a heat-flow coupling model of laser welding at preheating temperature was established by the FLUENT 19.0 software. The fluctuation of the keyhole wall and melt flow behavior in the molten pool under different preheating temperatures were analyzed, and the correlation between keyhole wall fluctuation and molten pool flow with spatters and bubbles was obtained. The results indicate that when the outer wall in the middle of the rear keyhole wall is convex, the inner wall is concave, which causes spatter or the bottom of the keyhole to collapse. When the metal layer in the middle of the rear keyhole wall turns into obliquely upward flow, welding spatter is generated. In contrast, the metal layer in the middle of the rear keyhole wall changes to flow into the keyhole, and the bottom of the keyhole collapses. When the preheating temperature is 300 K (ambient temperature), 400 K, and 500 K, the inner wall in the middle of the rear keyhole wall is concave. With the increase in the preheating temperature, the area of the concave gradually increases, and the size of the liquid column behind the keyhole opening gradually decreases. When the preheating temperature is 300 K, there are more spatters above the molten pool. In comparison, when the preheating temperature is 400 K or 500 K, there are less spatters, and the bottom of the keyhole collapses.
doi_str_mv 10.3390/coatings12091280
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2716514311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A745498178</galeid><sourcerecordid>A745498178</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-b5cfd55bc364baa5094928591dab8f102e250f5172448eae01ce3246945078343</originalsourceid><addsrcrecordid>eNpdkUtPwzAMgCMEEtPYnWMkzh15ts1x2nhJAyYxxLFKU3fr1CYlaQ_79wTGAWEfbPnx2ZYRuqZkzrkit8bpobG7QBlRlOXkDE0YyVSSCsrO__iXaBbCgURRlOdUTdD-ZezAN0a3-K3pxjZynMWuxhsPe_ih4i10PXg9jB5wTD67dgCLN861eHW0umtMwI3Fax3A4xVAn2zAwuBPrA9oq0i5Qhe1bgPMfu0Uvd_fbZePyfr14Wm5WCeGSzYkpTR1JWVpeCpKrSVRQrFcKlrpMq8pYcAkqSXNmBA5aCDUAGciVUKSLOeCT9HNidt79zlCGIqDG72NIwuW0VRSwSmNVfNT1U63UDS2dnFdE7WCeI6zUDcxvsiEFCqnETxF5NRgvAvBQ130vum0PxaUFN8_KP7_gH8BcBl7KA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716514311</pqid></control><display><type>article</type><title>Numerical Simulation of Preheating Temperature on Molten Pool Dynamics in Laser Deep-Penetration Welding</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Peng, Jin ; Liu, Jigao ; Yang, Xiaohong ; Ge, Jianya ; Han, Peng ; Wang, Xingxing ; Li, Shuai ; Wang, Yongbiao</creator><creatorcontrib>Peng, Jin ; Liu, Jigao ; Yang, Xiaohong ; Ge, Jianya ; Han, Peng ; Wang, Xingxing ; Li, Shuai ; Wang, Yongbiao</creatorcontrib><description>In this paper, a heat-flow coupling model of laser welding at preheating temperature was established by the FLUENT 19.0 software. The fluctuation of the keyhole wall and melt flow behavior in the molten pool under different preheating temperatures were analyzed, and the correlation between keyhole wall fluctuation and molten pool flow with spatters and bubbles was obtained. The results indicate that when the outer wall in the middle of the rear keyhole wall is convex, the inner wall is concave, which causes spatter or the bottom of the keyhole to collapse. When the metal layer in the middle of the rear keyhole wall turns into obliquely upward flow, welding spatter is generated. In contrast, the metal layer in the middle of the rear keyhole wall changes to flow into the keyhole, and the bottom of the keyhole collapses. When the preheating temperature is 300 K (ambient temperature), 400 K, and 500 K, the inner wall in the middle of the rear keyhole wall is concave. With the increase in the preheating temperature, the area of the concave gradually increases, and the size of the liquid column behind the keyhole opening gradually decreases. When the preheating temperature is 300 K, there are more spatters above the molten pool. In comparison, when the preheating temperature is 400 K or 500 K, there are less spatters, and the bottom of the keyhole collapses.</description><identifier>ISSN: 2079-6412</identifier><identifier>EISSN: 2079-6412</identifier><identifier>DOI: 10.3390/coatings12091280</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alloys ; Aluminum alloys ; Ambient temperature ; Analysis ; Energy ; Heat ; Heat transmission ; Heating ; Keyholes ; Laser beam welding ; Lasers ; Mathematical models ; Melt pools ; Numerical analysis ; Simulation methods ; Temperature ; Welding</subject><ispartof>Coatings (Basel), 2022-09, Vol.12 (9), p.1280</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-b5cfd55bc364baa5094928591dab8f102e250f5172448eae01ce3246945078343</citedby><cites>FETCH-LOGICAL-c352t-b5cfd55bc364baa5094928591dab8f102e250f5172448eae01ce3246945078343</cites><orcidid>0000-0002-9949-1545 ; 0000-0003-1353-2084</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Peng, Jin</creatorcontrib><creatorcontrib>Liu, Jigao</creatorcontrib><creatorcontrib>Yang, Xiaohong</creatorcontrib><creatorcontrib>Ge, Jianya</creatorcontrib><creatorcontrib>Han, Peng</creatorcontrib><creatorcontrib>Wang, Xingxing</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Wang, Yongbiao</creatorcontrib><title>Numerical Simulation of Preheating Temperature on Molten Pool Dynamics in Laser Deep-Penetration Welding</title><title>Coatings (Basel)</title><description>In this paper, a heat-flow coupling model of laser welding at preheating temperature was established by the FLUENT 19.0 software. The fluctuation of the keyhole wall and melt flow behavior in the molten pool under different preheating temperatures were analyzed, and the correlation between keyhole wall fluctuation and molten pool flow with spatters and bubbles was obtained. The results indicate that when the outer wall in the middle of the rear keyhole wall is convex, the inner wall is concave, which causes spatter or the bottom of the keyhole to collapse. When the metal layer in the middle of the rear keyhole wall turns into obliquely upward flow, welding spatter is generated. In contrast, the metal layer in the middle of the rear keyhole wall changes to flow into the keyhole, and the bottom of the keyhole collapses. When the preheating temperature is 300 K (ambient temperature), 400 K, and 500 K, the inner wall in the middle of the rear keyhole wall is concave. With the increase in the preheating temperature, the area of the concave gradually increases, and the size of the liquid column behind the keyhole opening gradually decreases. When the preheating temperature is 300 K, there are more spatters above the molten pool. In comparison, when the preheating temperature is 400 K or 500 K, there are less spatters, and the bottom of the keyhole collapses.</description><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Ambient temperature</subject><subject>Analysis</subject><subject>Energy</subject><subject>Heat</subject><subject>Heat transmission</subject><subject>Heating</subject><subject>Keyholes</subject><subject>Laser beam welding</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Melt pools</subject><subject>Numerical analysis</subject><subject>Simulation methods</subject><subject>Temperature</subject><subject>Welding</subject><issn>2079-6412</issn><issn>2079-6412</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkUtPwzAMgCMEEtPYnWMkzh15ts1x2nhJAyYxxLFKU3fr1CYlaQ_79wTGAWEfbPnx2ZYRuqZkzrkit8bpobG7QBlRlOXkDE0YyVSSCsrO__iXaBbCgURRlOdUTdD-ZezAN0a3-K3pxjZynMWuxhsPe_ih4i10PXg9jB5wTD67dgCLN861eHW0umtMwI3Fax3A4xVAn2zAwuBPrA9oq0i5Qhe1bgPMfu0Uvd_fbZePyfr14Wm5WCeGSzYkpTR1JWVpeCpKrSVRQrFcKlrpMq8pYcAkqSXNmBA5aCDUAGciVUKSLOeCT9HNidt79zlCGIqDG72NIwuW0VRSwSmNVfNT1U63UDS2dnFdE7WCeI6zUDcxvsiEFCqnETxF5NRgvAvBQ130vum0PxaUFN8_KP7_gH8BcBl7KA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Peng, Jin</creator><creator>Liu, Jigao</creator><creator>Yang, Xiaohong</creator><creator>Ge, Jianya</creator><creator>Han, Peng</creator><creator>Wang, Xingxing</creator><creator>Li, Shuai</creator><creator>Wang, Yongbiao</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9949-1545</orcidid><orcidid>https://orcid.org/0000-0003-1353-2084</orcidid></search><sort><creationdate>20220901</creationdate><title>Numerical Simulation of Preheating Temperature on Molten Pool Dynamics in Laser Deep-Penetration Welding</title><author>Peng, Jin ; Liu, Jigao ; Yang, Xiaohong ; Ge, Jianya ; Han, Peng ; Wang, Xingxing ; Li, Shuai ; Wang, Yongbiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-b5cfd55bc364baa5094928591dab8f102e250f5172448eae01ce3246945078343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Ambient temperature</topic><topic>Analysis</topic><topic>Energy</topic><topic>Heat</topic><topic>Heat transmission</topic><topic>Heating</topic><topic>Keyholes</topic><topic>Laser beam welding</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Melt pools</topic><topic>Numerical analysis</topic><topic>Simulation methods</topic><topic>Temperature</topic><topic>Welding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Jin</creatorcontrib><creatorcontrib>Liu, Jigao</creatorcontrib><creatorcontrib>Yang, Xiaohong</creatorcontrib><creatorcontrib>Ge, Jianya</creatorcontrib><creatorcontrib>Han, Peng</creatorcontrib><creatorcontrib>Wang, Xingxing</creatorcontrib><creatorcontrib>Li, Shuai</creatorcontrib><creatorcontrib>Wang, Yongbiao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Coatings (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Jin</au><au>Liu, Jigao</au><au>Yang, Xiaohong</au><au>Ge, Jianya</au><au>Han, Peng</au><au>Wang, Xingxing</au><au>Li, Shuai</au><au>Wang, Yongbiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Preheating Temperature on Molten Pool Dynamics in Laser Deep-Penetration Welding</atitle><jtitle>Coatings (Basel)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>9</issue><spage>1280</spage><pages>1280-</pages><issn>2079-6412</issn><eissn>2079-6412</eissn><abstract>In this paper, a heat-flow coupling model of laser welding at preheating temperature was established by the FLUENT 19.0 software. The fluctuation of the keyhole wall and melt flow behavior in the molten pool under different preheating temperatures were analyzed, and the correlation between keyhole wall fluctuation and molten pool flow with spatters and bubbles was obtained. The results indicate that when the outer wall in the middle of the rear keyhole wall is convex, the inner wall is concave, which causes spatter or the bottom of the keyhole to collapse. When the metal layer in the middle of the rear keyhole wall turns into obliquely upward flow, welding spatter is generated. In contrast, the metal layer in the middle of the rear keyhole wall changes to flow into the keyhole, and the bottom of the keyhole collapses. When the preheating temperature is 300 K (ambient temperature), 400 K, and 500 K, the inner wall in the middle of the rear keyhole wall is concave. With the increase in the preheating temperature, the area of the concave gradually increases, and the size of the liquid column behind the keyhole opening gradually decreases. When the preheating temperature is 300 K, there are more spatters above the molten pool. In comparison, when the preheating temperature is 400 K or 500 K, there are less spatters, and the bottom of the keyhole collapses.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/coatings12091280</doi><orcidid>https://orcid.org/0000-0002-9949-1545</orcidid><orcidid>https://orcid.org/0000-0003-1353-2084</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-6412
ispartof Coatings (Basel), 2022-09, Vol.12 (9), p.1280
issn 2079-6412
2079-6412
language eng
recordid cdi_proquest_journals_2716514311
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Alloys
Aluminum alloys
Ambient temperature
Analysis
Energy
Heat
Heat transmission
Heating
Keyholes
Laser beam welding
Lasers
Mathematical models
Melt pools
Numerical analysis
Simulation methods
Temperature
Welding
title Numerical Simulation of Preheating Temperature on Molten Pool Dynamics in Laser Deep-Penetration Welding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A10%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Preheating%20Temperature%20on%20Molten%20Pool%20Dynamics%20in%20Laser%20Deep-Penetration%20Welding&rft.jtitle=Coatings%20(Basel)&rft.au=Peng,%20Jin&rft.date=2022-09-01&rft.volume=12&rft.issue=9&rft.spage=1280&rft.pages=1280-&rft.issn=2079-6412&rft.eissn=2079-6412&rft_id=info:doi/10.3390/coatings12091280&rft_dat=%3Cgale_proqu%3EA745498178%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716514311&rft_id=info:pmid/&rft_galeid=A745498178&rfr_iscdi=true