Green Chemo-Enzymatic Protocols for the Synthesis of Enantiopure β-Blockers (S)-Esmolol and (S)-Penbutolol

The β-blocker (S)-esmolol, has been synthesized in 97% enantiomeric excess and 26% total yield in a four-step synthesis, with a transesterification step of the racemic chlorohydrin methyl 3-(4-(3-chloro-2-hydroxypropoxy)phenyl)propanoate, catalysed by lipase B from Candida antarctica from Syncozymes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2022-09, Vol.12 (9), p.980
Hauptverfasser: Troøyen, Susanne Hansen, Bocquin, Lucas, Tennfjord, Anna Lifen, Klungseth, Kristoffer, Jacobsen, Elisabeth Egholm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 980
container_title Catalysts
container_volume 12
creator Troøyen, Susanne Hansen
Bocquin, Lucas
Tennfjord, Anna Lifen
Klungseth, Kristoffer
Jacobsen, Elisabeth Egholm
description The β-blocker (S)-esmolol, has been synthesized in 97% enantiomeric excess and 26% total yield in a four-step synthesis, with a transesterification step of the racemic chlorohydrin methyl 3-(4-(3-chloro-2-hydroxypropoxy)phenyl)propanoate, catalysed by lipase B from Candida antarctica from Syncozymes, Shanghai, China. The β-blocker (S)-penbutolol, has been synthesized in 99% enantiomeric excess and in 22% total yield. The transesterification step of the racemic chlorohydrin 1-chloro-3-(2-cyclopentylphenoxy)propan-2-ol was catalyzed by the same lipase as used for the esmolol building block. We have used different bases for the deprotonation step of the starting phenols, and vinyl butanoate as the acyl donor in the transesterification reactions. The reaction times for the kinetic resolution steps catalysed by the lipase varied from 23 to 48 h, and were run at 30–38 °C. Specific rotation values confirmed the absolute configuration of the enantiopure drugs, however, an earlier report of the specific rotation value of (S)-esmolol is not consistent with our measured specific rotation values, and we here claim that our data are correct. Compared to the previously reported syntheses of these two enantiopure drugs, we have replaced toluene or dichloromethane with acetonitrile, and replaced the flammable acetyl chloride with lithium chloride. We have also reduced the amount of epichlorohydrin and bases, and identified dimeric byproducts in order to obtain higher yields.
doi_str_mv 10.3390/catal12090980
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2716512407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716512407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-5350ddeeba499425998dce9229a25d1f5fb81737ba9c8efdea75abcae346aae03</originalsourceid><addsrcrecordid>eNpVkM1OwzAQhC0EElXpkbslLnAw-C9NfIQqFKRKVCqcI8fZqGkTu9jOoTwWD8IzkVIOMJeZWa12pQ-hS0ZvhVD0zuioW8apoiqjJ2jEaSqIFFKe_snnaBLChg5STGQsGaHt3ANYPFtD50huP_adjo3BS--iM64NuHYexzXg1d4OFpqAXY1zq21s3K73gL8-yUPrzBZ8wNerG5KHzrWuxdpWP30JtuzjYXSBzmrdBpj8-hi9PeavsyeyeJk_z-4XxAgqI0lEQqsKoNRSKckTpbLKgOJcaZ5UrE7qMmOpSEutTAZ1BTpNdGk0CDnVGqgYo6vj3Z137z2EWGxc7-3wsuApmyaMywHIGJHjlvEuBA91sfNNp_2-YLQ4IC3-IRXf5WRrRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716512407</pqid></control><display><type>article</type><title>Green Chemo-Enzymatic Protocols for the Synthesis of Enantiopure β-Blockers (S)-Esmolol and (S)-Penbutolol</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Troøyen, Susanne Hansen ; Bocquin, Lucas ; Tennfjord, Anna Lifen ; Klungseth, Kristoffer ; Jacobsen, Elisabeth Egholm</creator><creatorcontrib>Troøyen, Susanne Hansen ; Bocquin, Lucas ; Tennfjord, Anna Lifen ; Klungseth, Kristoffer ; Jacobsen, Elisabeth Egholm</creatorcontrib><description>The β-blocker (S)-esmolol, has been synthesized in 97% enantiomeric excess and 26% total yield in a four-step synthesis, with a transesterification step of the racemic chlorohydrin methyl 3-(4-(3-chloro-2-hydroxypropoxy)phenyl)propanoate, catalysed by lipase B from Candida antarctica from Syncozymes, Shanghai, China. The β-blocker (S)-penbutolol, has been synthesized in 99% enantiomeric excess and in 22% total yield. The transesterification step of the racemic chlorohydrin 1-chloro-3-(2-cyclopentylphenoxy)propan-2-ol was catalyzed by the same lipase as used for the esmolol building block. We have used different bases for the deprotonation step of the starting phenols, and vinyl butanoate as the acyl donor in the transesterification reactions. The reaction times for the kinetic resolution steps catalysed by the lipase varied from 23 to 48 h, and were run at 30–38 °C. Specific rotation values confirmed the absolute configuration of the enantiopure drugs, however, an earlier report of the specific rotation value of (S)-esmolol is not consistent with our measured specific rotation values, and we here claim that our data are correct. Compared to the previously reported syntheses of these two enantiopure drugs, we have replaced toluene or dichloromethane with acetonitrile, and replaced the flammable acetyl chloride with lithium chloride. We have also reduced the amount of epichlorohydrin and bases, and identified dimeric byproducts in order to obtain higher yields.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal12090980</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Acetonitrile ; Acetyl chloride ; Adrenergic receptors ; Angina pectoris ; By products ; Catalysts ; Caustic soda ; Chemical reactions ; Dichloromethane ; Drugs ; Epichlorohydrin ; Hypertension ; Lipase ; Lithium chloride ; Phenols ; Potash ; Potassium ; Rotation ; Solvents ; Synthesis ; Toluene ; Transesterification</subject><ispartof>Catalysts, 2022-09, Vol.12 (9), p.980</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-5350ddeeba499425998dce9229a25d1f5fb81737ba9c8efdea75abcae346aae03</citedby><cites>FETCH-LOGICAL-c304t-5350ddeeba499425998dce9229a25d1f5fb81737ba9c8efdea75abcae346aae03</cites><orcidid>0000-0001-7518-7197 ; 0000-0003-4407-7205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Troøyen, Susanne Hansen</creatorcontrib><creatorcontrib>Bocquin, Lucas</creatorcontrib><creatorcontrib>Tennfjord, Anna Lifen</creatorcontrib><creatorcontrib>Klungseth, Kristoffer</creatorcontrib><creatorcontrib>Jacobsen, Elisabeth Egholm</creatorcontrib><title>Green Chemo-Enzymatic Protocols for the Synthesis of Enantiopure β-Blockers (S)-Esmolol and (S)-Penbutolol</title><title>Catalysts</title><description>The β-blocker (S)-esmolol, has been synthesized in 97% enantiomeric excess and 26% total yield in a four-step synthesis, with a transesterification step of the racemic chlorohydrin methyl 3-(4-(3-chloro-2-hydroxypropoxy)phenyl)propanoate, catalysed by lipase B from Candida antarctica from Syncozymes, Shanghai, China. The β-blocker (S)-penbutolol, has been synthesized in 99% enantiomeric excess and in 22% total yield. The transesterification step of the racemic chlorohydrin 1-chloro-3-(2-cyclopentylphenoxy)propan-2-ol was catalyzed by the same lipase as used for the esmolol building block. We have used different bases for the deprotonation step of the starting phenols, and vinyl butanoate as the acyl donor in the transesterification reactions. The reaction times for the kinetic resolution steps catalysed by the lipase varied from 23 to 48 h, and were run at 30–38 °C. Specific rotation values confirmed the absolute configuration of the enantiopure drugs, however, an earlier report of the specific rotation value of (S)-esmolol is not consistent with our measured specific rotation values, and we here claim that our data are correct. Compared to the previously reported syntheses of these two enantiopure drugs, we have replaced toluene or dichloromethane with acetonitrile, and replaced the flammable acetyl chloride with lithium chloride. We have also reduced the amount of epichlorohydrin and bases, and identified dimeric byproducts in order to obtain higher yields.</description><subject>Acetonitrile</subject><subject>Acetyl chloride</subject><subject>Adrenergic receptors</subject><subject>Angina pectoris</subject><subject>By products</subject><subject>Catalysts</subject><subject>Caustic soda</subject><subject>Chemical reactions</subject><subject>Dichloromethane</subject><subject>Drugs</subject><subject>Epichlorohydrin</subject><subject>Hypertension</subject><subject>Lipase</subject><subject>Lithium chloride</subject><subject>Phenols</subject><subject>Potash</subject><subject>Potassium</subject><subject>Rotation</subject><subject>Solvents</subject><subject>Synthesis</subject><subject>Toluene</subject><subject>Transesterification</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkM1OwzAQhC0EElXpkbslLnAw-C9NfIQqFKRKVCqcI8fZqGkTu9jOoTwWD8IzkVIOMJeZWa12pQ-hS0ZvhVD0zuioW8apoiqjJ2jEaSqIFFKe_snnaBLChg5STGQsGaHt3ANYPFtD50huP_adjo3BS--iM64NuHYexzXg1d4OFpqAXY1zq21s3K73gL8-yUPrzBZ8wNerG5KHzrWuxdpWP30JtuzjYXSBzmrdBpj8-hi9PeavsyeyeJk_z-4XxAgqI0lEQqsKoNRSKckTpbLKgOJcaZ5UrE7qMmOpSEutTAZ1BTpNdGk0CDnVGqgYo6vj3Z137z2EWGxc7-3wsuApmyaMywHIGJHjlvEuBA91sfNNp_2-YLQ4IC3-IRXf5WRrRw</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Troøyen, Susanne Hansen</creator><creator>Bocquin, Lucas</creator><creator>Tennfjord, Anna Lifen</creator><creator>Klungseth, Kristoffer</creator><creator>Jacobsen, Elisabeth Egholm</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7518-7197</orcidid><orcidid>https://orcid.org/0000-0003-4407-7205</orcidid></search><sort><creationdate>20220901</creationdate><title>Green Chemo-Enzymatic Protocols for the Synthesis of Enantiopure β-Blockers (S)-Esmolol and (S)-Penbutolol</title><author>Troøyen, Susanne Hansen ; Bocquin, Lucas ; Tennfjord, Anna Lifen ; Klungseth, Kristoffer ; Jacobsen, Elisabeth Egholm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-5350ddeeba499425998dce9229a25d1f5fb81737ba9c8efdea75abcae346aae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acetonitrile</topic><topic>Acetyl chloride</topic><topic>Adrenergic receptors</topic><topic>Angina pectoris</topic><topic>By products</topic><topic>Catalysts</topic><topic>Caustic soda</topic><topic>Chemical reactions</topic><topic>Dichloromethane</topic><topic>Drugs</topic><topic>Epichlorohydrin</topic><topic>Hypertension</topic><topic>Lipase</topic><topic>Lithium chloride</topic><topic>Phenols</topic><topic>Potash</topic><topic>Potassium</topic><topic>Rotation</topic><topic>Solvents</topic><topic>Synthesis</topic><topic>Toluene</topic><topic>Transesterification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Troøyen, Susanne Hansen</creatorcontrib><creatorcontrib>Bocquin, Lucas</creatorcontrib><creatorcontrib>Tennfjord, Anna Lifen</creatorcontrib><creatorcontrib>Klungseth, Kristoffer</creatorcontrib><creatorcontrib>Jacobsen, Elisabeth Egholm</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Troøyen, Susanne Hansen</au><au>Bocquin, Lucas</au><au>Tennfjord, Anna Lifen</au><au>Klungseth, Kristoffer</au><au>Jacobsen, Elisabeth Egholm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green Chemo-Enzymatic Protocols for the Synthesis of Enantiopure β-Blockers (S)-Esmolol and (S)-Penbutolol</atitle><jtitle>Catalysts</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>9</issue><spage>980</spage><pages>980-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>The β-blocker (S)-esmolol, has been synthesized in 97% enantiomeric excess and 26% total yield in a four-step synthesis, with a transesterification step of the racemic chlorohydrin methyl 3-(4-(3-chloro-2-hydroxypropoxy)phenyl)propanoate, catalysed by lipase B from Candida antarctica from Syncozymes, Shanghai, China. The β-blocker (S)-penbutolol, has been synthesized in 99% enantiomeric excess and in 22% total yield. The transesterification step of the racemic chlorohydrin 1-chloro-3-(2-cyclopentylphenoxy)propan-2-ol was catalyzed by the same lipase as used for the esmolol building block. We have used different bases for the deprotonation step of the starting phenols, and vinyl butanoate as the acyl donor in the transesterification reactions. The reaction times for the kinetic resolution steps catalysed by the lipase varied from 23 to 48 h, and were run at 30–38 °C. Specific rotation values confirmed the absolute configuration of the enantiopure drugs, however, an earlier report of the specific rotation value of (S)-esmolol is not consistent with our measured specific rotation values, and we here claim that our data are correct. Compared to the previously reported syntheses of these two enantiopure drugs, we have replaced toluene or dichloromethane with acetonitrile, and replaced the flammable acetyl chloride with lithium chloride. We have also reduced the amount of epichlorohydrin and bases, and identified dimeric byproducts in order to obtain higher yields.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal12090980</doi><orcidid>https://orcid.org/0000-0001-7518-7197</orcidid><orcidid>https://orcid.org/0000-0003-4407-7205</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4344
ispartof Catalysts, 2022-09, Vol.12 (9), p.980
issn 2073-4344
2073-4344
language eng
recordid cdi_proquest_journals_2716512407
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Acetonitrile
Acetyl chloride
Adrenergic receptors
Angina pectoris
By products
Catalysts
Caustic soda
Chemical reactions
Dichloromethane
Drugs
Epichlorohydrin
Hypertension
Lipase
Lithium chloride
Phenols
Potash
Potassium
Rotation
Solvents
Synthesis
Toluene
Transesterification
title Green Chemo-Enzymatic Protocols for the Synthesis of Enantiopure β-Blockers (S)-Esmolol and (S)-Penbutolol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A51%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20Chemo-Enzymatic%20Protocols%20for%20the%20Synthesis%20of%20Enantiopure%20%CE%B2-Blockers%20(S)-Esmolol%20and%20(S)-Penbutolol&rft.jtitle=Catalysts&rft.au=Tro%C3%B8yen,%20Susanne%20Hansen&rft.date=2022-09-01&rft.volume=12&rft.issue=9&rft.spage=980&rft.pages=980-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal12090980&rft_dat=%3Cproquest_cross%3E2716512407%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716512407&rft_id=info:pmid/&rfr_iscdi=true