Some new results on the P-type properties of Z-transformations on symmetric cones
This article is on Z -transformations with respect to a symmetric cone in a Euclidean Jordan algebra. Motivated by a well known result on Z matrices (i.e. matrices with off diagonal entries are non-positive), we show that various P -type properties are equivalent for a Z -transformation. These P -ty...
Gespeichert in:
Veröffentlicht in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2022-11, Vol.26 (5) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Positivity : an international journal devoted to the theory and applications of positivity in analysis |
container_volume | 26 |
creator | Ramamurthy, Balaji Mondal, Chiranjit |
description | This article is on
Z
-transformations with respect to a symmetric cone in a Euclidean Jordan algebra. Motivated by a well known result on
Z
matrices (i.e. matrices with off diagonal entries are non-positive), we show that various
P
-type properties are equivalent for a
Z
-transformation. These
P
-type properties arise from the theory of linear complementarity problems. Precisely, by utilizing the concept of principal subtransformations in a Euclidean Jordan algebra, we show that for a
Z
-transformation, the so-called completely
Q
, completely
P
and positive principal minor properties are equivalent. Examples of
Z
-transformations with completely
P
-property are then given. These examples are constructed by obtaining some new results in linear complementarity problems which are of independent interest. |
doi_str_mv | 10.1007/s11117-022-00939-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2716381151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716381151</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-12391157acca89480b424adb23da9a7bfd4215bf708066fbe9376dd692869d73</originalsourceid><addsrcrecordid>eNpFUE1LxDAQDaLguvoHPAU8R_PRNs1RFr9gQcU9eQlpO9Uu26QmWWT_veOu4Fzmwbx58-YRcin4teBc3ySBpRmXknFulGHlEZmJUktmZC2OEau6ZEIaeUrOUlpzjmsFn5HXtzAC9fBNI6TtJicaPM2fQF9Y3k1ApxgmiHkAHPT0neXofOpDHF0egt-z024cIcehpW3wkM7JSe82CS7--pys7u9Wi0e2fH54Wtwu2YS-MnpRRiBybetqU9S8KWThukaqzhmnm74rpCibXvOaV1XfgFG66roK_6lMp9WcXB1k0eHXFlK267CNHi9aqUWlahQXyFIHVpri4D8g_rMEt7_R2UN0FqOz--hsqX4ANi5hdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716381151</pqid></control><display><type>article</type><title>Some new results on the P-type properties of Z-transformations on symmetric cones</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Ramamurthy, Balaji ; Mondal, Chiranjit</creator><creatorcontrib>Ramamurthy, Balaji ; Mondal, Chiranjit</creatorcontrib><description>This article is on
Z
-transformations with respect to a symmetric cone in a Euclidean Jordan algebra. Motivated by a well known result on
Z
matrices (i.e. matrices with off diagonal entries are non-positive), we show that various
P
-type properties are equivalent for a
Z
-transformation. These
P
-type properties arise from the theory of linear complementarity problems. Precisely, by utilizing the concept of principal subtransformations in a Euclidean Jordan algebra, we show that for a
Z
-transformation, the so-called completely
Q
, completely
P
and positive principal minor properties are equivalent. Examples of
Z
-transformations with completely
P
-property are then given. These examples are constructed by obtaining some new results in linear complementarity problems which are of independent interest.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-022-00939-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Calculus of Variations and Optimal Control; Optimization ; Decomposition ; Econometrics ; Equivalence ; Fourier Analysis ; Mathematics ; Mathematics and Statistics ; Matrices (mathematics) ; Operator Theory ; Potential Theory ; Transformations</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2022-11, Vol.26 (5)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-022-00939-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-022-00939-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ramamurthy, Balaji</creatorcontrib><creatorcontrib>Mondal, Chiranjit</creatorcontrib><title>Some new results on the P-type properties of Z-transformations on symmetric cones</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>This article is on
Z
-transformations with respect to a symmetric cone in a Euclidean Jordan algebra. Motivated by a well known result on
Z
matrices (i.e. matrices with off diagonal entries are non-positive), we show that various
P
-type properties are equivalent for a
Z
-transformation. These
P
-type properties arise from the theory of linear complementarity problems. Precisely, by utilizing the concept of principal subtransformations in a Euclidean Jordan algebra, we show that for a
Z
-transformation, the so-called completely
Q
, completely
P
and positive principal minor properties are equivalent. Examples of
Z
-transformations with completely
P
-property are then given. These examples are constructed by obtaining some new results in linear complementarity problems which are of independent interest.</description><subject>Algebra</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Decomposition</subject><subject>Econometrics</subject><subject>Equivalence</subject><subject>Fourier Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices (mathematics)</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><subject>Transformations</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFUE1LxDAQDaLguvoHPAU8R_PRNs1RFr9gQcU9eQlpO9Uu26QmWWT_veOu4Fzmwbx58-YRcin4teBc3ySBpRmXknFulGHlEZmJUktmZC2OEau6ZEIaeUrOUlpzjmsFn5HXtzAC9fBNI6TtJicaPM2fQF9Y3k1ApxgmiHkAHPT0neXofOpDHF0egt-z024cIcehpW3wkM7JSe82CS7--pys7u9Wi0e2fH54Wtwu2YS-MnpRRiBybetqU9S8KWThukaqzhmnm74rpCibXvOaV1XfgFG66roK_6lMp9WcXB1k0eHXFlK267CNHi9aqUWlahQXyFIHVpri4D8g_rMEt7_R2UN0FqOz--hsqX4ANi5hdw</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ramamurthy, Balaji</creator><creator>Mondal, Chiranjit</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20221101</creationdate><title>Some new results on the P-type properties of Z-transformations on symmetric cones</title><author>Ramamurthy, Balaji ; Mondal, Chiranjit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-12391157acca89480b424adb23da9a7bfd4215bf708066fbe9376dd692869d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Decomposition</topic><topic>Econometrics</topic><topic>Equivalence</topic><topic>Fourier Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices (mathematics)</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramamurthy, Balaji</creatorcontrib><creatorcontrib>Mondal, Chiranjit</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramamurthy, Balaji</au><au>Mondal, Chiranjit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some new results on the P-type properties of Z-transformations on symmetric cones</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>26</volume><issue>5</issue><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>This article is on
Z
-transformations with respect to a symmetric cone in a Euclidean Jordan algebra. Motivated by a well known result on
Z
matrices (i.e. matrices with off diagonal entries are non-positive), we show that various
P
-type properties are equivalent for a
Z
-transformation. These
P
-type properties arise from the theory of linear complementarity problems. Precisely, by utilizing the concept of principal subtransformations in a Euclidean Jordan algebra, we show that for a
Z
-transformation, the so-called completely
Q
, completely
P
and positive principal minor properties are equivalent. Examples of
Z
-transformations with completely
P
-property are then given. These examples are constructed by obtaining some new results in linear complementarity problems which are of independent interest.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-022-00939-5</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1292 |
ispartof | Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2022-11, Vol.26 (5) |
issn | 1385-1292 1572-9281 |
language | eng |
recordid | cdi_proquest_journals_2716381151 |
source | EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals |
subjects | Algebra Calculus of Variations and Optimal Control Optimization Decomposition Econometrics Equivalence Fourier Analysis Mathematics Mathematics and Statistics Matrices (mathematics) Operator Theory Potential Theory Transformations |
title | Some new results on the P-type properties of Z-transformations on symmetric cones |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20new%20results%20on%20the%20P-type%20properties%20of%20Z-transformations%20on%20symmetric%20cones&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Ramamurthy,%20Balaji&rft.date=2022-11-01&rft.volume=26&rft.issue=5&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-022-00939-5&rft_dat=%3Cproquest_sprin%3E2716381151%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716381151&rft_id=info:pmid/&rfr_iscdi=true |