Some new results on the P-type properties of Z-transformations on symmetric cones

This article is on Z -transformations with respect to a symmetric cone in a Euclidean Jordan algebra. Motivated by a well known result on Z matrices (i.e. matrices with off diagonal entries are non-positive), we show that various P -type properties are equivalent for a Z -transformation. These P -ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2022-11, Vol.26 (5)
Hauptverfasser: Ramamurthy, Balaji, Mondal, Chiranjit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Positivity : an international journal devoted to the theory and applications of positivity in analysis
container_volume 26
creator Ramamurthy, Balaji
Mondal, Chiranjit
description This article is on Z -transformations with respect to a symmetric cone in a Euclidean Jordan algebra. Motivated by a well known result on Z matrices (i.e. matrices with off diagonal entries are non-positive), we show that various P -type properties are equivalent for a Z -transformation. These P -type properties arise from the theory of linear complementarity problems. Precisely, by utilizing the concept of principal subtransformations in a Euclidean Jordan algebra, we show that for a Z -transformation, the so-called completely Q , completely P and positive principal minor properties are equivalent. Examples of Z -transformations with completely P -property are then given. These examples are constructed by obtaining some new results in linear complementarity problems which are of independent interest.
doi_str_mv 10.1007/s11117-022-00939-5
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2716381151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716381151</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-12391157acca89480b424adb23da9a7bfd4215bf708066fbe9376dd692869d73</originalsourceid><addsrcrecordid>eNpFUE1LxDAQDaLguvoHPAU8R_PRNs1RFr9gQcU9eQlpO9Uu26QmWWT_veOu4Fzmwbx58-YRcin4teBc3ySBpRmXknFulGHlEZmJUktmZC2OEau6ZEIaeUrOUlpzjmsFn5HXtzAC9fBNI6TtJicaPM2fQF9Y3k1ApxgmiHkAHPT0neXofOpDHF0egt-z024cIcehpW3wkM7JSe82CS7--pys7u9Wi0e2fH54Wtwu2YS-MnpRRiBybetqU9S8KWThukaqzhmnm74rpCibXvOaV1XfgFG66roK_6lMp9WcXB1k0eHXFlK267CNHi9aqUWlahQXyFIHVpri4D8g_rMEt7_R2UN0FqOz--hsqX4ANi5hdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716381151</pqid></control><display><type>article</type><title>Some new results on the P-type properties of Z-transformations on symmetric cones</title><source>EBSCOhost Business Source Complete</source><source>Springer Nature - Complete Springer Journals</source><creator>Ramamurthy, Balaji ; Mondal, Chiranjit</creator><creatorcontrib>Ramamurthy, Balaji ; Mondal, Chiranjit</creatorcontrib><description>This article is on Z -transformations with respect to a symmetric cone in a Euclidean Jordan algebra. Motivated by a well known result on Z matrices (i.e. matrices with off diagonal entries are non-positive), we show that various P -type properties are equivalent for a Z -transformation. These P -type properties arise from the theory of linear complementarity problems. Precisely, by utilizing the concept of principal subtransformations in a Euclidean Jordan algebra, we show that for a Z -transformation, the so-called completely Q , completely P and positive principal minor properties are equivalent. Examples of Z -transformations with completely P -property are then given. These examples are constructed by obtaining some new results in linear complementarity problems which are of independent interest.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-022-00939-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Calculus of Variations and Optimal Control; Optimization ; Decomposition ; Econometrics ; Equivalence ; Fourier Analysis ; Mathematics ; Mathematics and Statistics ; Matrices (mathematics) ; Operator Theory ; Potential Theory ; Transformations</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2022-11, Vol.26 (5)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11117-022-00939-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11117-022-00939-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ramamurthy, Balaji</creatorcontrib><creatorcontrib>Mondal, Chiranjit</creatorcontrib><title>Some new results on the P-type properties of Z-transformations on symmetric cones</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>This article is on Z -transformations with respect to a symmetric cone in a Euclidean Jordan algebra. Motivated by a well known result on Z matrices (i.e. matrices with off diagonal entries are non-positive), we show that various P -type properties are equivalent for a Z -transformation. These P -type properties arise from the theory of linear complementarity problems. Precisely, by utilizing the concept of principal subtransformations in a Euclidean Jordan algebra, we show that for a Z -transformation, the so-called completely Q , completely P and positive principal minor properties are equivalent. Examples of Z -transformations with completely P -property are then given. These examples are constructed by obtaining some new results in linear complementarity problems which are of independent interest.</description><subject>Algebra</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Decomposition</subject><subject>Econometrics</subject><subject>Equivalence</subject><subject>Fourier Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices (mathematics)</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><subject>Transformations</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFUE1LxDAQDaLguvoHPAU8R_PRNs1RFr9gQcU9eQlpO9Uu26QmWWT_veOu4Fzmwbx58-YRcin4teBc3ySBpRmXknFulGHlEZmJUktmZC2OEau6ZEIaeUrOUlpzjmsFn5HXtzAC9fBNI6TtJicaPM2fQF9Y3k1ApxgmiHkAHPT0neXofOpDHF0egt-z024cIcehpW3wkM7JSe82CS7--pys7u9Wi0e2fH54Wtwu2YS-MnpRRiBybetqU9S8KWThukaqzhmnm74rpCibXvOaV1XfgFG66roK_6lMp9WcXB1k0eHXFlK267CNHi9aqUWlahQXyFIHVpri4D8g_rMEt7_R2UN0FqOz--hsqX4ANi5hdw</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Ramamurthy, Balaji</creator><creator>Mondal, Chiranjit</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20221101</creationdate><title>Some new results on the P-type properties of Z-transformations on symmetric cones</title><author>Ramamurthy, Balaji ; Mondal, Chiranjit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-12391157acca89480b424adb23da9a7bfd4215bf708066fbe9376dd692869d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Decomposition</topic><topic>Econometrics</topic><topic>Equivalence</topic><topic>Fourier Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices (mathematics)</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramamurthy, Balaji</creatorcontrib><creatorcontrib>Mondal, Chiranjit</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramamurthy, Balaji</au><au>Mondal, Chiranjit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some new results on the P-type properties of Z-transformations on symmetric cones</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>26</volume><issue>5</issue><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>This article is on Z -transformations with respect to a symmetric cone in a Euclidean Jordan algebra. Motivated by a well known result on Z matrices (i.e. matrices with off diagonal entries are non-positive), we show that various P -type properties are equivalent for a Z -transformation. These P -type properties arise from the theory of linear complementarity problems. Precisely, by utilizing the concept of principal subtransformations in a Euclidean Jordan algebra, we show that for a Z -transformation, the so-called completely Q , completely P and positive principal minor properties are equivalent. Examples of Z -transformations with completely P -property are then given. These examples are constructed by obtaining some new results in linear complementarity problems which are of independent interest.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-022-00939-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 1385-1292
ispartof Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2022-11, Vol.26 (5)
issn 1385-1292
1572-9281
language eng
recordid cdi_proquest_journals_2716381151
source EBSCOhost Business Source Complete; Springer Nature - Complete Springer Journals
subjects Algebra
Calculus of Variations and Optimal Control
Optimization
Decomposition
Econometrics
Equivalence
Fourier Analysis
Mathematics
Mathematics and Statistics
Matrices (mathematics)
Operator Theory
Potential Theory
Transformations
title Some new results on the P-type properties of Z-transformations on symmetric cones
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20new%20results%20on%20the%20P-type%20properties%20of%20Z-transformations%20on%20symmetric%20cones&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Ramamurthy,%20Balaji&rft.date=2022-11-01&rft.volume=26&rft.issue=5&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-022-00939-5&rft_dat=%3Cproquest_sprin%3E2716381151%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716381151&rft_id=info:pmid/&rfr_iscdi=true