Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material

The preparation of nanostructured anode materials which can adapt to lithiation strain with higher structural stability and specific capacity is the primary challenge for the development of lithium-ion batteries (LIBs). Herein, we developed a carbon-coated, fluorine-molybdenum-doped SnO 2 (SnO 2 @C-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2022-10, Vol.28 (10), p.4587-4597
Hauptverfasser: Gao, JiongJian, Huang, Rong, Yang, Dongping, Wu, Kaidan, Xiong, Deping, Feng, Zuyong, He, Miao, Feng, Yefeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4597
container_issue 10
container_start_page 4587
container_title Ionics
container_volume 28
creator Gao, JiongJian
Huang, Rong
Yang, Dongping
Wu, Kaidan
Xiong, Deping
Feng, Zuyong
He, Miao
Feng, Yefeng
description The preparation of nanostructured anode materials which can adapt to lithiation strain with higher structural stability and specific capacity is the primary challenge for the development of lithium-ion batteries (LIBs). Herein, we developed a carbon-coated, fluorine-molybdenum-doped SnO 2 (SnO 2 @C-MoF 4 ) green composite with high long-term cycling stability and specific capacity. The composite materials were prepared by the NaCl template method. The carbonaceous composites prepared by the NaCl template method will form a three-dimensional (3D) interconnected carbon structure, which can well alleviate the problem of the large volume change of SnO 2 during the lithium intercalation/delithiation process. Thereby, under the premise of maintaining a higher specific capacity, it can improve the long-term cycling stability of tin-based lithium-ion battery anode materials to meet the requirements of high-performance lithium-ion battery anode materials. The SnO 2 @C-MoF 4 composites prepared by the template method have an outstanding specific capacity (845.10 mAh/g) at 0.2 A/g, and superior cycling stability (749.19 mAh/g) was obtained after 800 charge–discharge cycles at 1.0 A/g.
doi_str_mv 10.1007/s11581-022-04717-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2716216436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716216436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-acde37acb7d51ad075d8935a37ca4949fc7ce5b92c5d38ce879d63a9e094776a3</originalsourceid><addsrcrecordid>eNp9kM1q3DAUhUVpoNOkL9CVoWsl-rEle1nyDylZNF2La-k6o-CRXEmGyWPkjavpBLrr6urqnHMPfIR85eycM6YvMuddzykTgrJWc033H8iG96quWrGPZMOGVlNdtU_kc84vjCnFhd6Qtx9xfh0dhnVHp3mNyQekLi7omp_hUTQBQlwgFW9nzM0IuQoxNPKq8aFgsjEEtKV-WkhjFXJJqy1rwgZys4OS_P7w2vrnLV0wTTHtIFhsZl-2vnb6mqkVDg9mTB7mM3IywZzxy_s8Jb9urp8u7-jD4-395fcHagVjhYJ1KDXYUbuOg2O6c_0gO5DaQju0w2S1xW4chO2c7C32enBKwoAHElqBPCXfjneXFH-vmIt5iWsKtdIIzZXgqpWqusTRZVPMOeFkluR3kF4NZ-aA3hzRm4re_EVv9jUkj6FczeEZ07_T_0n9AR88iwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716216436</pqid></control><display><type>article</type><title>Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material</title><source>Springer Nature - Complete Springer Journals</source><creator>Gao, JiongJian ; Huang, Rong ; Yang, Dongping ; Wu, Kaidan ; Xiong, Deping ; Feng, Zuyong ; He, Miao ; Feng, Yefeng</creator><creatorcontrib>Gao, JiongJian ; Huang, Rong ; Yang, Dongping ; Wu, Kaidan ; Xiong, Deping ; Feng, Zuyong ; He, Miao ; Feng, Yefeng</creatorcontrib><description>The preparation of nanostructured anode materials which can adapt to lithiation strain with higher structural stability and specific capacity is the primary challenge for the development of lithium-ion batteries (LIBs). Herein, we developed a carbon-coated, fluorine-molybdenum-doped SnO 2 (SnO 2 @C-MoF 4 ) green composite with high long-term cycling stability and specific capacity. The composite materials were prepared by the NaCl template method. The carbonaceous composites prepared by the NaCl template method will form a three-dimensional (3D) interconnected carbon structure, which can well alleviate the problem of the large volume change of SnO 2 during the lithium intercalation/delithiation process. Thereby, under the premise of maintaining a higher specific capacity, it can improve the long-term cycling stability of tin-based lithium-ion battery anode materials to meet the requirements of high-performance lithium-ion battery anode materials. The SnO 2 @C-MoF 4 composites prepared by the template method have an outstanding specific capacity (845.10 mAh/g) at 0.2 A/g, and superior cycling stability (749.19 mAh/g) was obtained after 800 charge–discharge cycles at 1.0 A/g.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-022-04717-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anodes ; Carbon ; Chemistry ; Chemistry and Materials Science ; Composite materials ; Condensed Matter Physics ; Cycles ; Electrochemistry ; Electrode materials ; Energy Storage ; Fluorine ; Lithium ; Lithium-ion batteries ; Molybdenum ; Nanoparticles ; Optical and Electronic Materials ; Original Paper ; Rechargeable batteries ; Renewable and Green Energy ; Structural stability ; Tin dioxide</subject><ispartof>Ionics, 2022-10, Vol.28 (10), p.4587-4597</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-acde37acb7d51ad075d8935a37ca4949fc7ce5b92c5d38ce879d63a9e094776a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-022-04717-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-022-04717-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Gao, JiongJian</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Yang, Dongping</creatorcontrib><creatorcontrib>Wu, Kaidan</creatorcontrib><creatorcontrib>Xiong, Deping</creatorcontrib><creatorcontrib>Feng, Zuyong</creatorcontrib><creatorcontrib>He, Miao</creatorcontrib><creatorcontrib>Feng, Yefeng</creatorcontrib><title>Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material</title><title>Ionics</title><addtitle>Ionics</addtitle><description>The preparation of nanostructured anode materials which can adapt to lithiation strain with higher structural stability and specific capacity is the primary challenge for the development of lithium-ion batteries (LIBs). Herein, we developed a carbon-coated, fluorine-molybdenum-doped SnO 2 (SnO 2 @C-MoF 4 ) green composite with high long-term cycling stability and specific capacity. The composite materials were prepared by the NaCl template method. The carbonaceous composites prepared by the NaCl template method will form a three-dimensional (3D) interconnected carbon structure, which can well alleviate the problem of the large volume change of SnO 2 during the lithium intercalation/delithiation process. Thereby, under the premise of maintaining a higher specific capacity, it can improve the long-term cycling stability of tin-based lithium-ion battery anode materials to meet the requirements of high-performance lithium-ion battery anode materials. The SnO 2 @C-MoF 4 composites prepared by the template method have an outstanding specific capacity (845.10 mAh/g) at 0.2 A/g, and superior cycling stability (749.19 mAh/g) was obtained after 800 charge–discharge cycles at 1.0 A/g.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Condensed Matter Physics</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy Storage</subject><subject>Fluorine</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Molybdenum</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Structural stability</subject><subject>Tin dioxide</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAUhUVpoNOkL9CVoWsl-rEle1nyDylZNF2La-k6o-CRXEmGyWPkjavpBLrr6urqnHMPfIR85eycM6YvMuddzykTgrJWc033H8iG96quWrGPZMOGVlNdtU_kc84vjCnFhd6Qtx9xfh0dhnVHp3mNyQekLi7omp_hUTQBQlwgFW9nzM0IuQoxNPKq8aFgsjEEtKV-WkhjFXJJqy1rwgZys4OS_P7w2vrnLV0wTTHtIFhsZl-2vnb6mqkVDg9mTB7mM3IywZzxy_s8Jb9urp8u7-jD4-395fcHagVjhYJ1KDXYUbuOg2O6c_0gO5DaQju0w2S1xW4chO2c7C32enBKwoAHElqBPCXfjneXFH-vmIt5iWsKtdIIzZXgqpWqusTRZVPMOeFkluR3kF4NZ-aA3hzRm4re_EVv9jUkj6FczeEZ07_T_0n9AR88iwg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Gao, JiongJian</creator><creator>Huang, Rong</creator><creator>Yang, Dongping</creator><creator>Wu, Kaidan</creator><creator>Xiong, Deping</creator><creator>Feng, Zuyong</creator><creator>He, Miao</creator><creator>Feng, Yefeng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material</title><author>Gao, JiongJian ; Huang, Rong ; Yang, Dongping ; Wu, Kaidan ; Xiong, Deping ; Feng, Zuyong ; He, Miao ; Feng, Yefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-acde37acb7d51ad075d8935a37ca4949fc7ce5b92c5d38ce879d63a9e094776a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Condensed Matter Physics</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy Storage</topic><topic>Fluorine</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Molybdenum</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Structural stability</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, JiongJian</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Yang, Dongping</creatorcontrib><creatorcontrib>Wu, Kaidan</creatorcontrib><creatorcontrib>Xiong, Deping</creatorcontrib><creatorcontrib>Feng, Zuyong</creatorcontrib><creatorcontrib>He, Miao</creatorcontrib><creatorcontrib>Feng, Yefeng</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, JiongJian</au><au>Huang, Rong</au><au>Yang, Dongping</au><au>Wu, Kaidan</au><au>Xiong, Deping</au><au>Feng, Zuyong</au><au>He, Miao</au><au>Feng, Yefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>28</volume><issue>10</issue><spage>4587</spage><epage>4597</epage><pages>4587-4597</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>The preparation of nanostructured anode materials which can adapt to lithiation strain with higher structural stability and specific capacity is the primary challenge for the development of lithium-ion batteries (LIBs). Herein, we developed a carbon-coated, fluorine-molybdenum-doped SnO 2 (SnO 2 @C-MoF 4 ) green composite with high long-term cycling stability and specific capacity. The composite materials were prepared by the NaCl template method. The carbonaceous composites prepared by the NaCl template method will form a three-dimensional (3D) interconnected carbon structure, which can well alleviate the problem of the large volume change of SnO 2 during the lithium intercalation/delithiation process. Thereby, under the premise of maintaining a higher specific capacity, it can improve the long-term cycling stability of tin-based lithium-ion battery anode materials to meet the requirements of high-performance lithium-ion battery anode materials. The SnO 2 @C-MoF 4 composites prepared by the template method have an outstanding specific capacity (845.10 mAh/g) at 0.2 A/g, and superior cycling stability (749.19 mAh/g) was obtained after 800 charge–discharge cycles at 1.0 A/g.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-022-04717-x</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2022-10, Vol.28 (10), p.4587-4597
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_2716216436
source Springer Nature - Complete Springer Journals
subjects Anodes
Carbon
Chemistry
Chemistry and Materials Science
Composite materials
Condensed Matter Physics
Cycles
Electrochemistry
Electrode materials
Energy Storage
Fluorine
Lithium
Lithium-ion batteries
Molybdenum
Nanoparticles
Optical and Electronic Materials
Original Paper
Rechargeable batteries
Renewable and Green Energy
Structural stability
Tin dioxide
title Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molybdenum-fluorine-doped%20SnO2%20nanoparticles%20based%20on%203D%20interconnected%20carbon%20structure%20as%20matrix%20as%20high-performance%20lithium-ion%20anode%20material&rft.jtitle=Ionics&rft.au=Gao,%20JiongJian&rft.date=2022-10-01&rft.volume=28&rft.issue=10&rft.spage=4587&rft.epage=4597&rft.pages=4587-4597&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-022-04717-x&rft_dat=%3Cproquest_cross%3E2716216436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716216436&rft_id=info:pmid/&rfr_iscdi=true