Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material
The preparation of nanostructured anode materials which can adapt to lithiation strain with higher structural stability and specific capacity is the primary challenge for the development of lithium-ion batteries (LIBs). Herein, we developed a carbon-coated, fluorine-molybdenum-doped SnO 2 (SnO 2 @C-...
Gespeichert in:
Veröffentlicht in: | Ionics 2022-10, Vol.28 (10), p.4587-4597 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4597 |
---|---|
container_issue | 10 |
container_start_page | 4587 |
container_title | Ionics |
container_volume | 28 |
creator | Gao, JiongJian Huang, Rong Yang, Dongping Wu, Kaidan Xiong, Deping Feng, Zuyong He, Miao Feng, Yefeng |
description | The preparation of nanostructured anode materials which can adapt to lithiation strain with higher structural stability and specific capacity is the primary challenge for the development of lithium-ion batteries (LIBs). Herein, we developed a carbon-coated, fluorine-molybdenum-doped SnO
2
(SnO
2
@C-MoF
4
) green composite with high long-term cycling stability and specific capacity. The composite materials were prepared by the NaCl template method. The carbonaceous composites prepared by the NaCl template method will form a three-dimensional (3D) interconnected carbon structure, which can well alleviate the problem of the large volume change of SnO
2
during the lithium intercalation/delithiation process. Thereby, under the premise of maintaining a higher specific capacity, it can improve the long-term cycling stability of tin-based lithium-ion battery anode materials to meet the requirements of high-performance lithium-ion battery anode materials. The SnO
2
@C-MoF
4
composites prepared by the template method have an outstanding specific capacity (845.10 mAh/g) at 0.2 A/g, and superior cycling stability (749.19 mAh/g) was obtained after 800 charge–discharge cycles at 1.0 A/g. |
doi_str_mv | 10.1007/s11581-022-04717-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2716216436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2716216436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-acde37acb7d51ad075d8935a37ca4949fc7ce5b92c5d38ce879d63a9e094776a3</originalsourceid><addsrcrecordid>eNp9kM1q3DAUhUVpoNOkL9CVoWsl-rEle1nyDylZNF2La-k6o-CRXEmGyWPkjavpBLrr6urqnHMPfIR85eycM6YvMuddzykTgrJWc033H8iG96quWrGPZMOGVlNdtU_kc84vjCnFhd6Qtx9xfh0dhnVHp3mNyQekLi7omp_hUTQBQlwgFW9nzM0IuQoxNPKq8aFgsjEEtKV-WkhjFXJJqy1rwgZys4OS_P7w2vrnLV0wTTHtIFhsZl-2vnb6mqkVDg9mTB7mM3IywZzxy_s8Jb9urp8u7-jD4-395fcHagVjhYJ1KDXYUbuOg2O6c_0gO5DaQju0w2S1xW4chO2c7C32enBKwoAHElqBPCXfjneXFH-vmIt5iWsKtdIIzZXgqpWqusTRZVPMOeFkluR3kF4NZ-aA3hzRm4re_EVv9jUkj6FczeEZ07_T_0n9AR88iwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2716216436</pqid></control><display><type>article</type><title>Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material</title><source>Springer Nature - Complete Springer Journals</source><creator>Gao, JiongJian ; Huang, Rong ; Yang, Dongping ; Wu, Kaidan ; Xiong, Deping ; Feng, Zuyong ; He, Miao ; Feng, Yefeng</creator><creatorcontrib>Gao, JiongJian ; Huang, Rong ; Yang, Dongping ; Wu, Kaidan ; Xiong, Deping ; Feng, Zuyong ; He, Miao ; Feng, Yefeng</creatorcontrib><description>The preparation of nanostructured anode materials which can adapt to lithiation strain with higher structural stability and specific capacity is the primary challenge for the development of lithium-ion batteries (LIBs). Herein, we developed a carbon-coated, fluorine-molybdenum-doped SnO
2
(SnO
2
@C-MoF
4
) green composite with high long-term cycling stability and specific capacity. The composite materials were prepared by the NaCl template method. The carbonaceous composites prepared by the NaCl template method will form a three-dimensional (3D) interconnected carbon structure, which can well alleviate the problem of the large volume change of SnO
2
during the lithium intercalation/delithiation process. Thereby, under the premise of maintaining a higher specific capacity, it can improve the long-term cycling stability of tin-based lithium-ion battery anode materials to meet the requirements of high-performance lithium-ion battery anode materials. The SnO
2
@C-MoF
4
composites prepared by the template method have an outstanding specific capacity (845.10 mAh/g) at 0.2 A/g, and superior cycling stability (749.19 mAh/g) was obtained after 800 charge–discharge cycles at 1.0 A/g.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-022-04717-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anodes ; Carbon ; Chemistry ; Chemistry and Materials Science ; Composite materials ; Condensed Matter Physics ; Cycles ; Electrochemistry ; Electrode materials ; Energy Storage ; Fluorine ; Lithium ; Lithium-ion batteries ; Molybdenum ; Nanoparticles ; Optical and Electronic Materials ; Original Paper ; Rechargeable batteries ; Renewable and Green Energy ; Structural stability ; Tin dioxide</subject><ispartof>Ionics, 2022-10, Vol.28 (10), p.4587-4597</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-acde37acb7d51ad075d8935a37ca4949fc7ce5b92c5d38ce879d63a9e094776a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-022-04717-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-022-04717-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Gao, JiongJian</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Yang, Dongping</creatorcontrib><creatorcontrib>Wu, Kaidan</creatorcontrib><creatorcontrib>Xiong, Deping</creatorcontrib><creatorcontrib>Feng, Zuyong</creatorcontrib><creatorcontrib>He, Miao</creatorcontrib><creatorcontrib>Feng, Yefeng</creatorcontrib><title>Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material</title><title>Ionics</title><addtitle>Ionics</addtitle><description>The preparation of nanostructured anode materials which can adapt to lithiation strain with higher structural stability and specific capacity is the primary challenge for the development of lithium-ion batteries (LIBs). Herein, we developed a carbon-coated, fluorine-molybdenum-doped SnO
2
(SnO
2
@C-MoF
4
) green composite with high long-term cycling stability and specific capacity. The composite materials were prepared by the NaCl template method. The carbonaceous composites prepared by the NaCl template method will form a three-dimensional (3D) interconnected carbon structure, which can well alleviate the problem of the large volume change of SnO
2
during the lithium intercalation/delithiation process. Thereby, under the premise of maintaining a higher specific capacity, it can improve the long-term cycling stability of tin-based lithium-ion battery anode materials to meet the requirements of high-performance lithium-ion battery anode materials. The SnO
2
@C-MoF
4
composites prepared by the template method have an outstanding specific capacity (845.10 mAh/g) at 0.2 A/g, and superior cycling stability (749.19 mAh/g) was obtained after 800 charge–discharge cycles at 1.0 A/g.</description><subject>Anodes</subject><subject>Carbon</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Composite materials</subject><subject>Condensed Matter Physics</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy Storage</subject><subject>Fluorine</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Molybdenum</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Original Paper</subject><subject>Rechargeable batteries</subject><subject>Renewable and Green Energy</subject><subject>Structural stability</subject><subject>Tin dioxide</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1q3DAUhUVpoNOkL9CVoWsl-rEle1nyDylZNF2La-k6o-CRXEmGyWPkjavpBLrr6urqnHMPfIR85eycM6YvMuddzykTgrJWc033H8iG96quWrGPZMOGVlNdtU_kc84vjCnFhd6Qtx9xfh0dhnVHp3mNyQekLi7omp_hUTQBQlwgFW9nzM0IuQoxNPKq8aFgsjEEtKV-WkhjFXJJqy1rwgZys4OS_P7w2vrnLV0wTTHtIFhsZl-2vnb6mqkVDg9mTB7mM3IywZzxy_s8Jb9urp8u7-jD4-395fcHagVjhYJ1KDXYUbuOg2O6c_0gO5DaQju0w2S1xW4chO2c7C32enBKwoAHElqBPCXfjneXFH-vmIt5iWsKtdIIzZXgqpWqusTRZVPMOeFkluR3kF4NZ-aA3hzRm4re_EVv9jUkj6FczeEZ07_T_0n9AR88iwg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Gao, JiongJian</creator><creator>Huang, Rong</creator><creator>Yang, Dongping</creator><creator>Wu, Kaidan</creator><creator>Xiong, Deping</creator><creator>Feng, Zuyong</creator><creator>He, Miao</creator><creator>Feng, Yefeng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material</title><author>Gao, JiongJian ; Huang, Rong ; Yang, Dongping ; Wu, Kaidan ; Xiong, Deping ; Feng, Zuyong ; He, Miao ; Feng, Yefeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-acde37acb7d51ad075d8935a37ca4949fc7ce5b92c5d38ce879d63a9e094776a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Composite materials</topic><topic>Condensed Matter Physics</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy Storage</topic><topic>Fluorine</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Molybdenum</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Original Paper</topic><topic>Rechargeable batteries</topic><topic>Renewable and Green Energy</topic><topic>Structural stability</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, JiongJian</creatorcontrib><creatorcontrib>Huang, Rong</creatorcontrib><creatorcontrib>Yang, Dongping</creatorcontrib><creatorcontrib>Wu, Kaidan</creatorcontrib><creatorcontrib>Xiong, Deping</creatorcontrib><creatorcontrib>Feng, Zuyong</creatorcontrib><creatorcontrib>He, Miao</creatorcontrib><creatorcontrib>Feng, Yefeng</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, JiongJian</au><au>Huang, Rong</au><au>Yang, Dongping</au><au>Wu, Kaidan</au><au>Xiong, Deping</au><au>Feng, Zuyong</au><au>He, Miao</au><au>Feng, Yefeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>28</volume><issue>10</issue><spage>4587</spage><epage>4597</epage><pages>4587-4597</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>The preparation of nanostructured anode materials which can adapt to lithiation strain with higher structural stability and specific capacity is the primary challenge for the development of lithium-ion batteries (LIBs). Herein, we developed a carbon-coated, fluorine-molybdenum-doped SnO
2
(SnO
2
@C-MoF
4
) green composite with high long-term cycling stability and specific capacity. The composite materials were prepared by the NaCl template method. The carbonaceous composites prepared by the NaCl template method will form a three-dimensional (3D) interconnected carbon structure, which can well alleviate the problem of the large volume change of SnO
2
during the lithium intercalation/delithiation process. Thereby, under the premise of maintaining a higher specific capacity, it can improve the long-term cycling stability of tin-based lithium-ion battery anode materials to meet the requirements of high-performance lithium-ion battery anode materials. The SnO
2
@C-MoF
4
composites prepared by the template method have an outstanding specific capacity (845.10 mAh/g) at 0.2 A/g, and superior cycling stability (749.19 mAh/g) was obtained after 800 charge–discharge cycles at 1.0 A/g.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-022-04717-x</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-7047 |
ispartof | Ionics, 2022-10, Vol.28 (10), p.4587-4597 |
issn | 0947-7047 1862-0760 |
language | eng |
recordid | cdi_proquest_journals_2716216436 |
source | Springer Nature - Complete Springer Journals |
subjects | Anodes Carbon Chemistry Chemistry and Materials Science Composite materials Condensed Matter Physics Cycles Electrochemistry Electrode materials Energy Storage Fluorine Lithium Lithium-ion batteries Molybdenum Nanoparticles Optical and Electronic Materials Original Paper Rechargeable batteries Renewable and Green Energy Structural stability Tin dioxide |
title | Molybdenum-fluorine-doped SnO2 nanoparticles based on 3D interconnected carbon structure as matrix as high-performance lithium-ion anode material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A07%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molybdenum-fluorine-doped%20SnO2%20nanoparticles%20based%20on%203D%20interconnected%20carbon%20structure%20as%20matrix%20as%20high-performance%20lithium-ion%20anode%20material&rft.jtitle=Ionics&rft.au=Gao,%20JiongJian&rft.date=2022-10-01&rft.volume=28&rft.issue=10&rft.spage=4587&rft.epage=4597&rft.pages=4587-4597&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-022-04717-x&rft_dat=%3Cproquest_cross%3E2716216436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2716216436&rft_id=info:pmid/&rfr_iscdi=true |