Seed surface doping-mediated seeded growth of Au-Ag Janus nanoparticles with tunable sizes and multiple plasmonic absorption modes

Noble metal Janus nanocrystals involving components with the same crystal structure and close lattice constants are technically difficult to produce as anisotropic growth is not favored under general deposition conditions. Herein, taking Au and Ag, we describe a feasible synthetic strategy to create...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CrystEngComm 2022-09, Vol.24 (36), p.6392-6399
Hauptverfasser: Kong, Yuhan, Zhang, Gongguo, Wang, Chunyu, Ma, Yanyun, Zheng, Yiqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6399
container_issue 36
container_start_page 6392
container_title CrystEngComm
container_volume 24
creator Kong, Yuhan
Zhang, Gongguo
Wang, Chunyu
Ma, Yanyun
Zheng, Yiqun
description Noble metal Janus nanocrystals involving components with the same crystal structure and close lattice constants are technically difficult to produce as anisotropic growth is not favored under general deposition conditions. Herein, taking Au and Ag, we describe a feasible synthetic strategy to create Au-Ag Janus nanoparticles (JNPs) with tunable sizes, which exhibit multiple plasmonic absorptions in the UV-vis range. The success of the current synthesis lies in the surface doping of trisoctahedral (TOH) Au seeds with limited amount of Pt/Ag atoms to introduce a relatively large lattice strain during the seeded growth, which is found crucial to facilitate the anisotropic deposition of Ag. In contrast, the use of undoped Au seeds leads to the formation of Au@Ag core-shell nanoparticles. The size of resulting products could be tuned by varying the amount of the added Ag precursor or the size/quantity of Au seeds. Compared to core-shell counterparts, the current Au-Ag Janus nanoparticles exhibit more plasmonic absorption peaks. Owing to such advantages, the current Au-Ag Janus nanoparticles show enhanced catalytic properties in the reduction of 4-nitrophenol under UV-vis light irradiation. The current study provides a feasible strategy that allows the fabrication of Janus bimetallic nanocrystals with elements having a close lattice constant and validates the promising use as plasmonic catalysts, which could be potentially extended to other metals or alloys. Gold-silver Janus nanoparticles with tunable sizes are successfully prepared, where the anisotropic deposition is induced by seed surface doping.
doi_str_mv 10.1039/d2ce00962e
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2715901236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715901236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-e48fc3169fd0cba96d6dafd3bc7d27b82b796fef9db15d4a2ef6ea851137ffc83</originalsourceid><addsrcrecordid>eNpNkc1LAzEQxYMoWKsX70LAm7Cajza7eyy1flHwoJ6XbDKpKbvJmmQpevQvd2tFPb3hvR8z8AahU0ouKeHllWYKCCkFgz00ohMhsoJwvv9vPkRHMa4JoRNKyQh9PgFoHPtgpAKsfWfdKmtBW5m2_hAOsgp-k16xN3jWZ7MVfpCuj9hJ5zsZklUNRLyxA5F6J-sGcLQfgyWdxm3fJNsNVtfI2HpnFZZ19KFL1jvceg3xGB0Y2UQ4-dExerlZPM_vsuXj7f18tswUK2jKYFIYxakojSaqlqXQQkujea1yzfK6YHVeCgOm1DWd6olkYATIYkopz41RBR-j893eLvi3HmKq1r4PbjhZsZxOS0IZFwN1saNU8DEGMFUXbCvDe0VJte24umbzxXfHiwE-28Ehql_u7wf8C69ZfCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715901236</pqid></control><display><type>article</type><title>Seed surface doping-mediated seeded growth of Au-Ag Janus nanoparticles with tunable sizes and multiple plasmonic absorption modes</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kong, Yuhan ; Zhang, Gongguo ; Wang, Chunyu ; Ma, Yanyun ; Zheng, Yiqun</creator><creatorcontrib>Kong, Yuhan ; Zhang, Gongguo ; Wang, Chunyu ; Ma, Yanyun ; Zheng, Yiqun</creatorcontrib><description>Noble metal Janus nanocrystals involving components with the same crystal structure and close lattice constants are technically difficult to produce as anisotropic growth is not favored under general deposition conditions. Herein, taking Au and Ag, we describe a feasible synthetic strategy to create Au-Ag Janus nanoparticles (JNPs) with tunable sizes, which exhibit multiple plasmonic absorptions in the UV-vis range. The success of the current synthesis lies in the surface doping of trisoctahedral (TOH) Au seeds with limited amount of Pt/Ag atoms to introduce a relatively large lattice strain during the seeded growth, which is found crucial to facilitate the anisotropic deposition of Ag. In contrast, the use of undoped Au seeds leads to the formation of Au@Ag core-shell nanoparticles. The size of resulting products could be tuned by varying the amount of the added Ag precursor or the size/quantity of Au seeds. Compared to core-shell counterparts, the current Au-Ag Janus nanoparticles exhibit more plasmonic absorption peaks. Owing to such advantages, the current Au-Ag Janus nanoparticles show enhanced catalytic properties in the reduction of 4-nitrophenol under UV-vis light irradiation. The current study provides a feasible strategy that allows the fabrication of Janus bimetallic nanocrystals with elements having a close lattice constant and validates the promising use as plasmonic catalysts, which could be potentially extended to other metals or alloys. Gold-silver Janus nanoparticles with tunable sizes are successfully prepared, where the anisotropic deposition is induced by seed surface doping.</description><identifier>ISSN: 1466-8033</identifier><identifier>EISSN: 1466-8033</identifier><identifier>DOI: 10.1039/d2ce00962e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Absorption ; Bimetals ; Core-shell particles ; Crystal lattices ; Crystal structure ; Deposition ; Doping ; Gold ; Lattice parameters ; Lattice strain ; Lattice vibration ; Light irradiation ; Nanocrystals ; Nanoparticles ; Nitrophenol ; Noble metals ; Plasmonics ; Seeds ; Silver ; Surface chemistry</subject><ispartof>CrystEngComm, 2022-09, Vol.24 (36), p.6392-6399</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-e48fc3169fd0cba96d6dafd3bc7d27b82b796fef9db15d4a2ef6ea851137ffc83</citedby><cites>FETCH-LOGICAL-c281t-e48fc3169fd0cba96d6dafd3bc7d27b82b796fef9db15d4a2ef6ea851137ffc83</cites><orcidid>0000-0002-4659-7303 ; 0000-0002-3319-0352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kong, Yuhan</creatorcontrib><creatorcontrib>Zhang, Gongguo</creatorcontrib><creatorcontrib>Wang, Chunyu</creatorcontrib><creatorcontrib>Ma, Yanyun</creatorcontrib><creatorcontrib>Zheng, Yiqun</creatorcontrib><title>Seed surface doping-mediated seeded growth of Au-Ag Janus nanoparticles with tunable sizes and multiple plasmonic absorption modes</title><title>CrystEngComm</title><description>Noble metal Janus nanocrystals involving components with the same crystal structure and close lattice constants are technically difficult to produce as anisotropic growth is not favored under general deposition conditions. Herein, taking Au and Ag, we describe a feasible synthetic strategy to create Au-Ag Janus nanoparticles (JNPs) with tunable sizes, which exhibit multiple plasmonic absorptions in the UV-vis range. The success of the current synthesis lies in the surface doping of trisoctahedral (TOH) Au seeds with limited amount of Pt/Ag atoms to introduce a relatively large lattice strain during the seeded growth, which is found crucial to facilitate the anisotropic deposition of Ag. In contrast, the use of undoped Au seeds leads to the formation of Au@Ag core-shell nanoparticles. The size of resulting products could be tuned by varying the amount of the added Ag precursor or the size/quantity of Au seeds. Compared to core-shell counterparts, the current Au-Ag Janus nanoparticles exhibit more plasmonic absorption peaks. Owing to such advantages, the current Au-Ag Janus nanoparticles show enhanced catalytic properties in the reduction of 4-nitrophenol under UV-vis light irradiation. The current study provides a feasible strategy that allows the fabrication of Janus bimetallic nanocrystals with elements having a close lattice constant and validates the promising use as plasmonic catalysts, which could be potentially extended to other metals or alloys. Gold-silver Janus nanoparticles with tunable sizes are successfully prepared, where the anisotropic deposition is induced by seed surface doping.</description><subject>Absorption</subject><subject>Bimetals</subject><subject>Core-shell particles</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Deposition</subject><subject>Doping</subject><subject>Gold</subject><subject>Lattice parameters</subject><subject>Lattice strain</subject><subject>Lattice vibration</subject><subject>Light irradiation</subject><subject>Nanocrystals</subject><subject>Nanoparticles</subject><subject>Nitrophenol</subject><subject>Noble metals</subject><subject>Plasmonics</subject><subject>Seeds</subject><subject>Silver</subject><subject>Surface chemistry</subject><issn>1466-8033</issn><issn>1466-8033</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkc1LAzEQxYMoWKsX70LAm7Cajza7eyy1flHwoJ6XbDKpKbvJmmQpevQvd2tFPb3hvR8z8AahU0ouKeHllWYKCCkFgz00ohMhsoJwvv9vPkRHMa4JoRNKyQh9PgFoHPtgpAKsfWfdKmtBW5m2_hAOsgp-k16xN3jWZ7MVfpCuj9hJ5zsZklUNRLyxA5F6J-sGcLQfgyWdxm3fJNsNVtfI2HpnFZZ19KFL1jvceg3xGB0Y2UQ4-dExerlZPM_vsuXj7f18tswUK2jKYFIYxakojSaqlqXQQkujea1yzfK6YHVeCgOm1DWd6olkYATIYkopz41RBR-j893eLvi3HmKq1r4PbjhZsZxOS0IZFwN1saNU8DEGMFUXbCvDe0VJte24umbzxXfHiwE-28Ehql_u7wf8C69ZfCE</recordid><startdate>20220920</startdate><enddate>20220920</enddate><creator>Kong, Yuhan</creator><creator>Zhang, Gongguo</creator><creator>Wang, Chunyu</creator><creator>Ma, Yanyun</creator><creator>Zheng, Yiqun</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4659-7303</orcidid><orcidid>https://orcid.org/0000-0002-3319-0352</orcidid></search><sort><creationdate>20220920</creationdate><title>Seed surface doping-mediated seeded growth of Au-Ag Janus nanoparticles with tunable sizes and multiple plasmonic absorption modes</title><author>Kong, Yuhan ; Zhang, Gongguo ; Wang, Chunyu ; Ma, Yanyun ; Zheng, Yiqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-e48fc3169fd0cba96d6dafd3bc7d27b82b796fef9db15d4a2ef6ea851137ffc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorption</topic><topic>Bimetals</topic><topic>Core-shell particles</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Deposition</topic><topic>Doping</topic><topic>Gold</topic><topic>Lattice parameters</topic><topic>Lattice strain</topic><topic>Lattice vibration</topic><topic>Light irradiation</topic><topic>Nanocrystals</topic><topic>Nanoparticles</topic><topic>Nitrophenol</topic><topic>Noble metals</topic><topic>Plasmonics</topic><topic>Seeds</topic><topic>Silver</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Yuhan</creatorcontrib><creatorcontrib>Zhang, Gongguo</creatorcontrib><creatorcontrib>Wang, Chunyu</creatorcontrib><creatorcontrib>Ma, Yanyun</creatorcontrib><creatorcontrib>Zheng, Yiqun</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>CrystEngComm</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Yuhan</au><au>Zhang, Gongguo</au><au>Wang, Chunyu</au><au>Ma, Yanyun</au><au>Zheng, Yiqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Seed surface doping-mediated seeded growth of Au-Ag Janus nanoparticles with tunable sizes and multiple plasmonic absorption modes</atitle><jtitle>CrystEngComm</jtitle><date>2022-09-20</date><risdate>2022</risdate><volume>24</volume><issue>36</issue><spage>6392</spage><epage>6399</epage><pages>6392-6399</pages><issn>1466-8033</issn><eissn>1466-8033</eissn><abstract>Noble metal Janus nanocrystals involving components with the same crystal structure and close lattice constants are technically difficult to produce as anisotropic growth is not favored under general deposition conditions. Herein, taking Au and Ag, we describe a feasible synthetic strategy to create Au-Ag Janus nanoparticles (JNPs) with tunable sizes, which exhibit multiple plasmonic absorptions in the UV-vis range. The success of the current synthesis lies in the surface doping of trisoctahedral (TOH) Au seeds with limited amount of Pt/Ag atoms to introduce a relatively large lattice strain during the seeded growth, which is found crucial to facilitate the anisotropic deposition of Ag. In contrast, the use of undoped Au seeds leads to the formation of Au@Ag core-shell nanoparticles. The size of resulting products could be tuned by varying the amount of the added Ag precursor or the size/quantity of Au seeds. Compared to core-shell counterparts, the current Au-Ag Janus nanoparticles exhibit more plasmonic absorption peaks. Owing to such advantages, the current Au-Ag Janus nanoparticles show enhanced catalytic properties in the reduction of 4-nitrophenol under UV-vis light irradiation. The current study provides a feasible strategy that allows the fabrication of Janus bimetallic nanocrystals with elements having a close lattice constant and validates the promising use as plasmonic catalysts, which could be potentially extended to other metals or alloys. Gold-silver Janus nanoparticles with tunable sizes are successfully prepared, where the anisotropic deposition is induced by seed surface doping.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ce00962e</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4659-7303</orcidid><orcidid>https://orcid.org/0000-0002-3319-0352</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1466-8033
ispartof CrystEngComm, 2022-09, Vol.24 (36), p.6392-6399
issn 1466-8033
1466-8033
language eng
recordid cdi_proquest_journals_2715901236
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Absorption
Bimetals
Core-shell particles
Crystal lattices
Crystal structure
Deposition
Doping
Gold
Lattice parameters
Lattice strain
Lattice vibration
Light irradiation
Nanocrystals
Nanoparticles
Nitrophenol
Noble metals
Plasmonics
Seeds
Silver
Surface chemistry
title Seed surface doping-mediated seeded growth of Au-Ag Janus nanoparticles with tunable sizes and multiple plasmonic absorption modes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Seed%20surface%20doping-mediated%20seeded%20growth%20of%20Au-Ag%20Janus%20nanoparticles%20with%20tunable%20sizes%20and%20multiple%20plasmonic%20absorption%20modes&rft.jtitle=CrystEngComm&rft.au=Kong,%20Yuhan&rft.date=2022-09-20&rft.volume=24&rft.issue=36&rft.spage=6392&rft.epage=6399&rft.pages=6392-6399&rft.issn=1466-8033&rft.eissn=1466-8033&rft_id=info:doi/10.1039/d2ce00962e&rft_dat=%3Cproquest_rsc_p%3E2715901236%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715901236&rft_id=info:pmid/&rfr_iscdi=true