Using Experimental Design and Response Surface Methodology to Optimize Nanocellulose Production from Two Types of Pretreated Soybean Straw
This study investigates how enzymatic activity (X1) and pretreated soybean straw concentration (X2) affect the production of cellulose nanofibers and reducing sugars using the Composite Central Rotational Design (CCRD). The soybean straw is subjected to alkaline pretreatment with either 5% NaOH (PT1...
Gespeichert in:
Veröffentlicht in: | Macromolecular chemistry and physics 2022-09, Vol.223 (18), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 18 |
container_start_page | |
container_title | Macromolecular chemistry and physics |
container_volume | 223 |
creator | Silva, Natalia C. Esposto, Bruno S. Maniglia, Bianca C. Tapia‐Blácido, Delia R. Martelli‐Tosi, Milena |
description | This study investigates how enzymatic activity (X1) and pretreated soybean straw concentration (X2) affect the production of cellulose nanofibers and reducing sugars using the Composite Central Rotational Design (CCRD). The soybean straw is subjected to alkaline pretreatment with either 5% NaOH (PT1) or 17.5% NaOH (PT2), followed by bleaching (4% H2O2) and enzymatic treatment. The mathematical model generated by Response Surface Methodology (RSM) predicts that increasing X1 and X2 simultaneously is necessary to increase the nanocellulose yield. On the other hand, to increase the sugar yield, it is necessary to increase the ratio X1:X2. The model also predicts that the lowest concentration of soybean straw (1.17%) resulted in more stable nanofiber suspensions, regardless of the enzyme activity (−25.0 and −19.4 mV for PT1 and PT2, respectively). The optimal condition for the simultaneous production of cellulose nanofibers and reducing sugars is 4.0 g of biomass and enzymatic activity of 600 CMCU, resulting for PT1 and PT2, respectively: 7.01 and 3.73 g of nanofibers/100 g of soybean straw; 11.34 and 14.30 g of reducing sugars/100 g of soybean straw. Therefore, the processing efficiency according to the pretreatment used can directly guide the production of cellulose nanofibers and reducing sugars.
Pretreated soybean straw concentration and enzymatic activity affect the production of cellulose nanofibers and reducing sugars. Composite Central Rotational Design 22 is considered an important statistical tool and is able to predict the optimal condition: 4.0 g of biomass and enzymatic activity of 600 CMCU with the production of 11–14% of reducing sugars and 3.7–7.0% of nanofiber concentration. |
doi_str_mv | 10.1002/macp.202200050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2715895051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715895051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2470-8c37710f0e8a4d663658a91326e1d0e6e84f4b742b266b024e9534a2ce0a4c843</originalsourceid><addsrcrecordid>eNqFkMlOwzAQhiMEEmW5crbEOWXs2FmOVSmLxCZazpHrTEqq1A62oxIegafGqAiOnGY08_0z0hdFZxTGFIBdbKTqxgwYAwABe9GICkbjpEjEfujDPKaJYIfRkXPrgORQZKPo88U1ekVm7x3aZoPay5ZcomtWmkhdkWd0ndEOyby3tVRI7tG_msq0ZjUQb8hj55tN84HkQWqjsG371gT6yZqqV74xmtTWbMhia8hi6NARU4cleovSY0XmZlii1GTurdyeRAe1bB2e_tTj6OVqtpjexHeP17fTyV2sGM8gzlWSZRRqwFzyKk2TVOSyoAlLkVaAKea85suMsyVL0yUwjoVIuGQKQXKV8-Q4Ot_d7ax569H5cm16q8PLkmVU5IUAQQM13lHKGucs1mUXBEk7lBTKb9_lt-_y13cIFLvAtmlx-Icu7yfTp7_sF2nbhdE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715895051</pqid></control><display><type>article</type><title>Using Experimental Design and Response Surface Methodology to Optimize Nanocellulose Production from Two Types of Pretreated Soybean Straw</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Silva, Natalia C. ; Esposto, Bruno S. ; Maniglia, Bianca C. ; Tapia‐Blácido, Delia R. ; Martelli‐Tosi, Milena</creator><creatorcontrib>Silva, Natalia C. ; Esposto, Bruno S. ; Maniglia, Bianca C. ; Tapia‐Blácido, Delia R. ; Martelli‐Tosi, Milena</creatorcontrib><description>This study investigates how enzymatic activity (X1) and pretreated soybean straw concentration (X2) affect the production of cellulose nanofibers and reducing sugars using the Composite Central Rotational Design (CCRD). The soybean straw is subjected to alkaline pretreatment with either 5% NaOH (PT1) or 17.5% NaOH (PT2), followed by bleaching (4% H2O2) and enzymatic treatment. The mathematical model generated by Response Surface Methodology (RSM) predicts that increasing X1 and X2 simultaneously is necessary to increase the nanocellulose yield. On the other hand, to increase the sugar yield, it is necessary to increase the ratio X1:X2. The model also predicts that the lowest concentration of soybean straw (1.17%) resulted in more stable nanofiber suspensions, regardless of the enzyme activity (−25.0 and −19.4 mV for PT1 and PT2, respectively). The optimal condition for the simultaneous production of cellulose nanofibers and reducing sugars is 4.0 g of biomass and enzymatic activity of 600 CMCU, resulting for PT1 and PT2, respectively: 7.01 and 3.73 g of nanofibers/100 g of soybean straw; 11.34 and 14.30 g of reducing sugars/100 g of soybean straw. Therefore, the processing efficiency according to the pretreatment used can directly guide the production of cellulose nanofibers and reducing sugars.
Pretreated soybean straw concentration and enzymatic activity affect the production of cellulose nanofibers and reducing sugars. Composite Central Rotational Design 22 is considered an important statistical tool and is able to predict the optimal condition: 4.0 g of biomass and enzymatic activity of 600 CMCU with the production of 11–14% of reducing sugars and 3.7–7.0% of nanofiber concentration.</description><identifier>ISSN: 1022-1352</identifier><identifier>EISSN: 1521-3935</identifier><identifier>DOI: 10.1002/macp.202200050</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Bleaching ; Cellulose ; Cellulose fibers ; Design of experiments ; Design optimization ; enzymatic hydrolysis ; Enzyme activity ; Hydrogen peroxide ; lignocellulosic materials ; Mathematical models ; Nanofibers ; nanofibrils ; Pretreatment ; reducing sugars ; Response surface methodology ; soybean straw ; Soybeans ; Sugar</subject><ispartof>Macromolecular chemistry and physics, 2022-09, Vol.223 (18), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2470-8c37710f0e8a4d663658a91326e1d0e6e84f4b742b266b024e9534a2ce0a4c843</citedby><cites>FETCH-LOGICAL-c2470-8c37710f0e8a4d663658a91326e1d0e6e84f4b742b266b024e9534a2ce0a4c843</cites><orcidid>0000-0001-6060-9713</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmacp.202200050$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmacp.202200050$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Silva, Natalia C.</creatorcontrib><creatorcontrib>Esposto, Bruno S.</creatorcontrib><creatorcontrib>Maniglia, Bianca C.</creatorcontrib><creatorcontrib>Tapia‐Blácido, Delia R.</creatorcontrib><creatorcontrib>Martelli‐Tosi, Milena</creatorcontrib><title>Using Experimental Design and Response Surface Methodology to Optimize Nanocellulose Production from Two Types of Pretreated Soybean Straw</title><title>Macromolecular chemistry and physics</title><description>This study investigates how enzymatic activity (X1) and pretreated soybean straw concentration (X2) affect the production of cellulose nanofibers and reducing sugars using the Composite Central Rotational Design (CCRD). The soybean straw is subjected to alkaline pretreatment with either 5% NaOH (PT1) or 17.5% NaOH (PT2), followed by bleaching (4% H2O2) and enzymatic treatment. The mathematical model generated by Response Surface Methodology (RSM) predicts that increasing X1 and X2 simultaneously is necessary to increase the nanocellulose yield. On the other hand, to increase the sugar yield, it is necessary to increase the ratio X1:X2. The model also predicts that the lowest concentration of soybean straw (1.17%) resulted in more stable nanofiber suspensions, regardless of the enzyme activity (−25.0 and −19.4 mV for PT1 and PT2, respectively). The optimal condition for the simultaneous production of cellulose nanofibers and reducing sugars is 4.0 g of biomass and enzymatic activity of 600 CMCU, resulting for PT1 and PT2, respectively: 7.01 and 3.73 g of nanofibers/100 g of soybean straw; 11.34 and 14.30 g of reducing sugars/100 g of soybean straw. Therefore, the processing efficiency according to the pretreatment used can directly guide the production of cellulose nanofibers and reducing sugars.
Pretreated soybean straw concentration and enzymatic activity affect the production of cellulose nanofibers and reducing sugars. Composite Central Rotational Design 22 is considered an important statistical tool and is able to predict the optimal condition: 4.0 g of biomass and enzymatic activity of 600 CMCU with the production of 11–14% of reducing sugars and 3.7–7.0% of nanofiber concentration.</description><subject>Bleaching</subject><subject>Cellulose</subject><subject>Cellulose fibers</subject><subject>Design of experiments</subject><subject>Design optimization</subject><subject>enzymatic hydrolysis</subject><subject>Enzyme activity</subject><subject>Hydrogen peroxide</subject><subject>lignocellulosic materials</subject><subject>Mathematical models</subject><subject>Nanofibers</subject><subject>nanofibrils</subject><subject>Pretreatment</subject><subject>reducing sugars</subject><subject>Response surface methodology</subject><subject>soybean straw</subject><subject>Soybeans</subject><subject>Sugar</subject><issn>1022-1352</issn><issn>1521-3935</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAQhiMEEmW5crbEOWXs2FmOVSmLxCZazpHrTEqq1A62oxIegafGqAiOnGY08_0z0hdFZxTGFIBdbKTqxgwYAwABe9GICkbjpEjEfujDPKaJYIfRkXPrgORQZKPo88U1ekVm7x3aZoPay5ZcomtWmkhdkWd0ndEOyby3tVRI7tG_msq0ZjUQb8hj55tN84HkQWqjsG371gT6yZqqV74xmtTWbMhia8hi6NARU4cleovSY0XmZlii1GTurdyeRAe1bB2e_tTj6OVqtpjexHeP17fTyV2sGM8gzlWSZRRqwFzyKk2TVOSyoAlLkVaAKea85suMsyVL0yUwjoVIuGQKQXKV8-Q4Ot_d7ax569H5cm16q8PLkmVU5IUAQQM13lHKGucs1mUXBEk7lBTKb9_lt-_y13cIFLvAtmlx-Icu7yfTp7_sF2nbhdE</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Silva, Natalia C.</creator><creator>Esposto, Bruno S.</creator><creator>Maniglia, Bianca C.</creator><creator>Tapia‐Blácido, Delia R.</creator><creator>Martelli‐Tosi, Milena</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6060-9713</orcidid></search><sort><creationdate>202209</creationdate><title>Using Experimental Design and Response Surface Methodology to Optimize Nanocellulose Production from Two Types of Pretreated Soybean Straw</title><author>Silva, Natalia C. ; Esposto, Bruno S. ; Maniglia, Bianca C. ; Tapia‐Blácido, Delia R. ; Martelli‐Tosi, Milena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2470-8c37710f0e8a4d663658a91326e1d0e6e84f4b742b266b024e9534a2ce0a4c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bleaching</topic><topic>Cellulose</topic><topic>Cellulose fibers</topic><topic>Design of experiments</topic><topic>Design optimization</topic><topic>enzymatic hydrolysis</topic><topic>Enzyme activity</topic><topic>Hydrogen peroxide</topic><topic>lignocellulosic materials</topic><topic>Mathematical models</topic><topic>Nanofibers</topic><topic>nanofibrils</topic><topic>Pretreatment</topic><topic>reducing sugars</topic><topic>Response surface methodology</topic><topic>soybean straw</topic><topic>Soybeans</topic><topic>Sugar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Natalia C.</creatorcontrib><creatorcontrib>Esposto, Bruno S.</creatorcontrib><creatorcontrib>Maniglia, Bianca C.</creatorcontrib><creatorcontrib>Tapia‐Blácido, Delia R.</creatorcontrib><creatorcontrib>Martelli‐Tosi, Milena</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular chemistry and physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Natalia C.</au><au>Esposto, Bruno S.</au><au>Maniglia, Bianca C.</au><au>Tapia‐Blácido, Delia R.</au><au>Martelli‐Tosi, Milena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Experimental Design and Response Surface Methodology to Optimize Nanocellulose Production from Two Types of Pretreated Soybean Straw</atitle><jtitle>Macromolecular chemistry and physics</jtitle><date>2022-09</date><risdate>2022</risdate><volume>223</volume><issue>18</issue><epage>n/a</epage><issn>1022-1352</issn><eissn>1521-3935</eissn><abstract>This study investigates how enzymatic activity (X1) and pretreated soybean straw concentration (X2) affect the production of cellulose nanofibers and reducing sugars using the Composite Central Rotational Design (CCRD). The soybean straw is subjected to alkaline pretreatment with either 5% NaOH (PT1) or 17.5% NaOH (PT2), followed by bleaching (4% H2O2) and enzymatic treatment. The mathematical model generated by Response Surface Methodology (RSM) predicts that increasing X1 and X2 simultaneously is necessary to increase the nanocellulose yield. On the other hand, to increase the sugar yield, it is necessary to increase the ratio X1:X2. The model also predicts that the lowest concentration of soybean straw (1.17%) resulted in more stable nanofiber suspensions, regardless of the enzyme activity (−25.0 and −19.4 mV for PT1 and PT2, respectively). The optimal condition for the simultaneous production of cellulose nanofibers and reducing sugars is 4.0 g of biomass and enzymatic activity of 600 CMCU, resulting for PT1 and PT2, respectively: 7.01 and 3.73 g of nanofibers/100 g of soybean straw; 11.34 and 14.30 g of reducing sugars/100 g of soybean straw. Therefore, the processing efficiency according to the pretreatment used can directly guide the production of cellulose nanofibers and reducing sugars.
Pretreated soybean straw concentration and enzymatic activity affect the production of cellulose nanofibers and reducing sugars. Composite Central Rotational Design 22 is considered an important statistical tool and is able to predict the optimal condition: 4.0 g of biomass and enzymatic activity of 600 CMCU with the production of 11–14% of reducing sugars and 3.7–7.0% of nanofiber concentration.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/macp.202200050</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6060-9713</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1352 |
ispartof | Macromolecular chemistry and physics, 2022-09, Vol.223 (18), p.n/a |
issn | 1022-1352 1521-3935 |
language | eng |
recordid | cdi_proquest_journals_2715895051 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bleaching Cellulose Cellulose fibers Design of experiments Design optimization enzymatic hydrolysis Enzyme activity Hydrogen peroxide lignocellulosic materials Mathematical models Nanofibers nanofibrils Pretreatment reducing sugars Response surface methodology soybean straw Soybeans Sugar |
title | Using Experimental Design and Response Surface Methodology to Optimize Nanocellulose Production from Two Types of Pretreated Soybean Straw |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Experimental%20Design%20and%20Response%20Surface%20Methodology%20to%20Optimize%20Nanocellulose%20Production%20from%20Two%20Types%20of%20Pretreated%20Soybean%20Straw&rft.jtitle=Macromolecular%20chemistry%20and%20physics&rft.au=Silva,%20Natalia%20C.&rft.date=2022-09&rft.volume=223&rft.issue=18&rft.epage=n/a&rft.issn=1022-1352&rft.eissn=1521-3935&rft_id=info:doi/10.1002/macp.202200050&rft_dat=%3Cproquest_cross%3E2715895051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715895051&rft_id=info:pmid/&rfr_iscdi=true |