Improved key-recovery attacks on reduced-round WEM-8

Proposed in CT-RSA’2017, WEM is a family of white-box block ciphers based on the Even-Mansour structure and AES. Due to its elegant structure and impressive performance, WEM is a prominent primitive in white-box cryptography-oriented scenarios like digital rights management (DRM) and mobile payment....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2022-10, Vol.90 (10), p.2419-2448
Hauptverfasser: Liu, Jun, Wang, Dachao, Hu, Yupu, Chen, Jie, Wang, Baocang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2448
container_issue 10
container_start_page 2419
container_title Designs, codes, and cryptography
container_volume 90
creator Liu, Jun
Wang, Dachao
Hu, Yupu
Chen, Jie
Wang, Baocang
description Proposed in CT-RSA’2017, WEM is a family of white-box block ciphers based on the Even-Mansour structure and AES. Due to its elegant structure and impressive performance, WEM is a prominent primitive in white-box cryptography-oriented scenarios like digital rights management (DRM) and mobile payment. In this paper, we focus on the black-box key-recovery security of reduced-round WEM-8, one of the main instances in the WEM family, with the aim of gaining an intensive understanding of the security of WEM. Potential weaknesses of WEM-8 are explored, and a new approach to improving the efficiency of integral attacks is introduced, which constructs equations from the constant property, instead of the balance property. Aided by these observations, new competitive key-recovery attacks with lower time/data/memory complexity on reduced-round WEM-8 are proposed. In particular, the improved attack on 4-round WEM-8 requires only 2 8 adaptively chosen ciphertexts, whereas the current best attack has the data complexity of 2 40 chosen plaintexts. The results in this work show the effectiveness of the constant property in enhancing integral attacks and can inspire novel techniques in key-recovery attacks against other (white-box) block ciphers.
doi_str_mv 10.1007/s10623-022-01089-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2715808873</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715808873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-1f335618c46339b44d5f94786b44a2228f7e419f4853a4a00518b73ab999bea03</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIhMIPcIrE2bDrR2wfUVVopSIuII6W4ziIlibFTpD69xiCxI3TjrQzs7NDyCXCNQKom4RQMU6BMQoI2lA8IgVKxamSujomBRgmKeb9KTlLaQMAyIEVRKx2-9h_hqbchgONwWccD6UbBue3qey7MoZm9KGhsR-7pnxZPFB9Tk5a957Cxe-ckee7xdN8SdeP96v57Zp6BjBQbDmXFWovKs5NLUQjWyOUrjJ0jDHdqiDQtEJL7oQDkKhrxV1tjKmDAz4jV5NvjvgxhjTYTT_GLp-0TKHUoLXimcUmlo99SjG0dh_fdi4eLIL9bsdO7dj8vf1px2IW8UmUMrl7DfHP-h_VF1SLZKI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715808873</pqid></control><display><type>article</type><title>Improved key-recovery attacks on reduced-round WEM-8</title><source>SpringerLink Journals</source><creator>Liu, Jun ; Wang, Dachao ; Hu, Yupu ; Chen, Jie ; Wang, Baocang</creator><creatorcontrib>Liu, Jun ; Wang, Dachao ; Hu, Yupu ; Chen, Jie ; Wang, Baocang</creatorcontrib><description>Proposed in CT-RSA’2017, WEM is a family of white-box block ciphers based on the Even-Mansour structure and AES. Due to its elegant structure and impressive performance, WEM is a prominent primitive in white-box cryptography-oriented scenarios like digital rights management (DRM) and mobile payment. In this paper, we focus on the black-box key-recovery security of reduced-round WEM-8, one of the main instances in the WEM family, with the aim of gaining an intensive understanding of the security of WEM. Potential weaknesses of WEM-8 are explored, and a new approach to improving the efficiency of integral attacks is introduced, which constructs equations from the constant property, instead of the balance property. Aided by these observations, new competitive key-recovery attacks with lower time/data/memory complexity on reduced-round WEM-8 are proposed. In particular, the improved attack on 4-round WEM-8 requires only 2 8 adaptively chosen ciphertexts, whereas the current best attack has the data complexity of 2 40 chosen plaintexts. The results in this work show the effectiveness of the constant property in enhancing integral attacks and can inspire novel techniques in key-recovery attacks against other (white-box) block ciphers.</description><identifier>ISSN: 0925-1022</identifier><identifier>EISSN: 1573-7586</identifier><identifier>DOI: 10.1007/s10623-022-01089-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Coding and Information Theory ; Complexity ; Computer Science ; Copy protection ; Cryptography ; Cryptology ; Digital rights management ; Discrete Mathematics in Computer Science ; Encryption ; Mobile commerce ; Security</subject><ispartof>Designs, codes, and cryptography, 2022-10, Vol.90 (10), p.2419-2448</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-1f335618c46339b44d5f94786b44a2228f7e419f4853a4a00518b73ab999bea03</cites><orcidid>0000-0002-4152-8923 ; 0000-0002-2554-4464 ; 0000-0002-7091-9616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10623-022-01089-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10623-022-01089-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Wang, Dachao</creatorcontrib><creatorcontrib>Hu, Yupu</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Wang, Baocang</creatorcontrib><title>Improved key-recovery attacks on reduced-round WEM-8</title><title>Designs, codes, and cryptography</title><addtitle>Des. Codes Cryptogr</addtitle><description>Proposed in CT-RSA’2017, WEM is a family of white-box block ciphers based on the Even-Mansour structure and AES. Due to its elegant structure and impressive performance, WEM is a prominent primitive in white-box cryptography-oriented scenarios like digital rights management (DRM) and mobile payment. In this paper, we focus on the black-box key-recovery security of reduced-round WEM-8, one of the main instances in the WEM family, with the aim of gaining an intensive understanding of the security of WEM. Potential weaknesses of WEM-8 are explored, and a new approach to improving the efficiency of integral attacks is introduced, which constructs equations from the constant property, instead of the balance property. Aided by these observations, new competitive key-recovery attacks with lower time/data/memory complexity on reduced-round WEM-8 are proposed. In particular, the improved attack on 4-round WEM-8 requires only 2 8 adaptively chosen ciphertexts, whereas the current best attack has the data complexity of 2 40 chosen plaintexts. The results in this work show the effectiveness of the constant property in enhancing integral attacks and can inspire novel techniques in key-recovery attacks against other (white-box) block ciphers.</description><subject>Algorithms</subject><subject>Coding and Information Theory</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Copy protection</subject><subject>Cryptography</subject><subject>Cryptology</subject><subject>Digital rights management</subject><subject>Discrete Mathematics in Computer Science</subject><subject>Encryption</subject><subject>Mobile commerce</subject><subject>Security</subject><issn>0925-1022</issn><issn>1573-7586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIhMIPcIrE2bDrR2wfUVVopSIuII6W4ziIlibFTpD69xiCxI3TjrQzs7NDyCXCNQKom4RQMU6BMQoI2lA8IgVKxamSujomBRgmKeb9KTlLaQMAyIEVRKx2-9h_hqbchgONwWccD6UbBue3qey7MoZm9KGhsR-7pnxZPFB9Tk5a957Cxe-ckee7xdN8SdeP96v57Zp6BjBQbDmXFWovKs5NLUQjWyOUrjJ0jDHdqiDQtEJL7oQDkKhrxV1tjKmDAz4jV5NvjvgxhjTYTT_GLp-0TKHUoLXimcUmlo99SjG0dh_fdi4eLIL9bsdO7dj8vf1px2IW8UmUMrl7DfHP-h_VF1SLZKI</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Liu, Jun</creator><creator>Wang, Dachao</creator><creator>Hu, Yupu</creator><creator>Chen, Jie</creator><creator>Wang, Baocang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4152-8923</orcidid><orcidid>https://orcid.org/0000-0002-2554-4464</orcidid><orcidid>https://orcid.org/0000-0002-7091-9616</orcidid></search><sort><creationdate>20221001</creationdate><title>Improved key-recovery attacks on reduced-round WEM-8</title><author>Liu, Jun ; Wang, Dachao ; Hu, Yupu ; Chen, Jie ; Wang, Baocang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-1f335618c46339b44d5f94786b44a2228f7e419f4853a4a00518b73ab999bea03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Coding and Information Theory</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Copy protection</topic><topic>Cryptography</topic><topic>Cryptology</topic><topic>Digital rights management</topic><topic>Discrete Mathematics in Computer Science</topic><topic>Encryption</topic><topic>Mobile commerce</topic><topic>Security</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Wang, Dachao</creatorcontrib><creatorcontrib>Hu, Yupu</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Wang, Baocang</creatorcontrib><collection>CrossRef</collection><jtitle>Designs, codes, and cryptography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jun</au><au>Wang, Dachao</au><au>Hu, Yupu</au><au>Chen, Jie</au><au>Wang, Baocang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved key-recovery attacks on reduced-round WEM-8</atitle><jtitle>Designs, codes, and cryptography</jtitle><stitle>Des. Codes Cryptogr</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>90</volume><issue>10</issue><spage>2419</spage><epage>2448</epage><pages>2419-2448</pages><issn>0925-1022</issn><eissn>1573-7586</eissn><abstract>Proposed in CT-RSA’2017, WEM is a family of white-box block ciphers based on the Even-Mansour structure and AES. Due to its elegant structure and impressive performance, WEM is a prominent primitive in white-box cryptography-oriented scenarios like digital rights management (DRM) and mobile payment. In this paper, we focus on the black-box key-recovery security of reduced-round WEM-8, one of the main instances in the WEM family, with the aim of gaining an intensive understanding of the security of WEM. Potential weaknesses of WEM-8 are explored, and a new approach to improving the efficiency of integral attacks is introduced, which constructs equations from the constant property, instead of the balance property. Aided by these observations, new competitive key-recovery attacks with lower time/data/memory complexity on reduced-round WEM-8 are proposed. In particular, the improved attack on 4-round WEM-8 requires only 2 8 adaptively chosen ciphertexts, whereas the current best attack has the data complexity of 2 40 chosen plaintexts. The results in this work show the effectiveness of the constant property in enhancing integral attacks and can inspire novel techniques in key-recovery attacks against other (white-box) block ciphers.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10623-022-01089-1</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0002-4152-8923</orcidid><orcidid>https://orcid.org/0000-0002-2554-4464</orcidid><orcidid>https://orcid.org/0000-0002-7091-9616</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-1022
ispartof Designs, codes, and cryptography, 2022-10, Vol.90 (10), p.2419-2448
issn 0925-1022
1573-7586
language eng
recordid cdi_proquest_journals_2715808873
source SpringerLink Journals
subjects Algorithms
Coding and Information Theory
Complexity
Computer Science
Copy protection
Cryptography
Cryptology
Digital rights management
Discrete Mathematics in Computer Science
Encryption
Mobile commerce
Security
title Improved key-recovery attacks on reduced-round WEM-8
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20key-recovery%20attacks%20on%20reduced-round%20WEM-8&rft.jtitle=Designs,%20codes,%20and%20cryptography&rft.au=Liu,%20Jun&rft.date=2022-10-01&rft.volume=90&rft.issue=10&rft.spage=2419&rft.epage=2448&rft.pages=2419-2448&rft.issn=0925-1022&rft.eissn=1573-7586&rft_id=info:doi/10.1007/s10623-022-01089-1&rft_dat=%3Cproquest_cross%3E2715808873%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715808873&rft_id=info:pmid/&rfr_iscdi=true