Combustion of Ethylene and Kerosene in a Supersonic Flow at Low Mach Numbers

Combustion of ethylene and kerosene in flows with Mach numbers M   2 is numerically studied. Flow throttling with the use of a side jet of compressed air is provided for igniting the fuel injected through an axial injector and for supporting its combustion. The Reynolds-averaged Navier–Stokes equati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion, explosion, and shock waves explosion, and shock waves, 2022-08, Vol.58 (4), p.450-456
Hauptverfasser: Zamuraev, V. P., Kalinina, A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 4
container_start_page 450
container_title Combustion, explosion, and shock waves
container_volume 58
creator Zamuraev, V. P.
Kalinina, A. P.
description Combustion of ethylene and kerosene in flows with Mach numbers M   2 is numerically studied. Flow throttling with the use of a side jet of compressed air is provided for igniting the fuel injected through an axial injector and for supporting its combustion. The Reynolds-averaged Navier–Stokes equations closed with the  –  turbulence model are solved. Fuel combustion is modeled by one reaction. The possibility of formation of a transonic flow is considered. The gas-dynamic structure of the flow in the channel in the case of kerosene combustion is investigated for the Mach number M = 1.7 and stagnation temperatures of 1400 and 1500 K. The computations are performed for various values of the limiter of turbulent kinetic energy generation.
doi_str_mv 10.1134/S0010508222040074
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2715808867</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715808867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c246t-fd05b9b07ba9b6d82f5dce73c87d9e3b186ce8473fbf921dbe0713bc5be7906d3</originalsourceid><addsrcrecordid>eNp1UE1LwzAYDqLgnP4AbwHP1TdJ06RHGZsTqx6m55KkqevYkpm0yP69KRM8iKeHl-eL90HomsAtISy_WwEQ4CAppZADiPwETQgXLJMs56doMtLZyJ-jixg3AEBpXkxQNfM7PcS-8w77Fs_79WFrncXKNfjJBh_Ho3NY4dWwtyF61xm82PovrHpcJXhWZo1fhp1O5CU6a9U22qsfnKL3xfxttsyq14fH2X2VmdTZZ20DXJcahFalLhpJW94YK5iRoikt00QWxspcsFa3JSWNtiAI04ZrK0ooGjZFN8fcffCfg419vfFDcKmypoJwCVIWIqnIUWXSGzHYtt6HbqfCoSZQj6PVf0ZLHnr0xKR1Hzb8Jv9v-gb_LW1D</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715808867</pqid></control><display><type>article</type><title>Combustion of Ethylene and Kerosene in a Supersonic Flow at Low Mach Numbers</title><source>Springer Nature - Complete Springer Journals</source><creator>Zamuraev, V. P. ; Kalinina, A. P.</creator><creatorcontrib>Zamuraev, V. P. ; Kalinina, A. P.</creatorcontrib><description>Combustion of ethylene and kerosene in flows with Mach numbers M   2 is numerically studied. Flow throttling with the use of a side jet of compressed air is provided for igniting the fuel injected through an axial injector and for supporting its combustion. The Reynolds-averaged Navier–Stokes equations closed with the  –  turbulence model are solved. Fuel combustion is modeled by one reaction. The possibility of formation of a transonic flow is considered. The gas-dynamic structure of the flow in the channel in the case of kerosene combustion is investigated for the Mach number M = 1.7 and stagnation temperatures of 1400 and 1500 K. The computations are performed for various values of the limiter of turbulent kinetic energy generation.</description><identifier>ISSN: 0010-5082</identifier><identifier>EISSN: 1573-8345</identifier><identifier>DOI: 10.1134/S0010508222040074</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical and Continuum Physics ; Classical Mechanics ; Compressed air ; Control ; Dynamical Systems ; Engineering ; Ethylene ; Fuel combustion ; Kerosene ; Kinetic energy ; Mach number ; Physical Chemistry ; Physics ; Physics and Astronomy ; Reynolds averaged Navier-Stokes method ; Supersonic flow ; Throttling ; Transonic flow ; Turbulence models ; Turbulent flow ; Vibration</subject><ispartof>Combustion, explosion, and shock waves, 2022-08, Vol.58 (4), p.450-456</ispartof><rights>Pleiades Publishing, Ltd. 2022</rights><rights>Pleiades Publishing, Ltd. 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c246t-fd05b9b07ba9b6d82f5dce73c87d9e3b186ce8473fbf921dbe0713bc5be7906d3</citedby><cites>FETCH-LOGICAL-c246t-fd05b9b07ba9b6d82f5dce73c87d9e3b186ce8473fbf921dbe0713bc5be7906d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0010508222040074$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0010508222040074$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zamuraev, V. P.</creatorcontrib><creatorcontrib>Kalinina, A. P.</creatorcontrib><title>Combustion of Ethylene and Kerosene in a Supersonic Flow at Low Mach Numbers</title><title>Combustion, explosion, and shock waves</title><addtitle>Combust Explos Shock Waves</addtitle><description>Combustion of ethylene and kerosene in flows with Mach numbers M   2 is numerically studied. Flow throttling with the use of a side jet of compressed air is provided for igniting the fuel injected through an axial injector and for supporting its combustion. The Reynolds-averaged Navier–Stokes equations closed with the  –  turbulence model are solved. Fuel combustion is modeled by one reaction. The possibility of formation of a transonic flow is considered. The gas-dynamic structure of the flow in the channel in the case of kerosene combustion is investigated for the Mach number M = 1.7 and stagnation temperatures of 1400 and 1500 K. The computations are performed for various values of the limiter of turbulent kinetic energy generation.</description><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Compressed air</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Ethylene</subject><subject>Fuel combustion</subject><subject>Kerosene</subject><subject>Kinetic energy</subject><subject>Mach number</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Supersonic flow</subject><subject>Throttling</subject><subject>Transonic flow</subject><subject>Turbulence models</subject><subject>Turbulent flow</subject><subject>Vibration</subject><issn>0010-5082</issn><issn>1573-8345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LwzAYDqLgnP4AbwHP1TdJ06RHGZsTqx6m55KkqevYkpm0yP69KRM8iKeHl-eL90HomsAtISy_WwEQ4CAppZADiPwETQgXLJMs56doMtLZyJ-jixg3AEBpXkxQNfM7PcS-8w77Fs_79WFrncXKNfjJBh_Ho3NY4dWwtyF61xm82PovrHpcJXhWZo1fhp1O5CU6a9U22qsfnKL3xfxttsyq14fH2X2VmdTZZ20DXJcahFalLhpJW94YK5iRoikt00QWxspcsFa3JSWNtiAI04ZrK0ooGjZFN8fcffCfg419vfFDcKmypoJwCVIWIqnIUWXSGzHYtt6HbqfCoSZQj6PVf0ZLHnr0xKR1Hzb8Jv9v-gb_LW1D</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Zamuraev, V. P.</creator><creator>Kalinina, A. P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>Combustion of Ethylene and Kerosene in a Supersonic Flow at Low Mach Numbers</title><author>Zamuraev, V. P. ; Kalinina, A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c246t-fd05b9b07ba9b6d82f5dce73c87d9e3b186ce8473fbf921dbe0713bc5be7906d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Compressed air</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Ethylene</topic><topic>Fuel combustion</topic><topic>Kerosene</topic><topic>Kinetic energy</topic><topic>Mach number</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Supersonic flow</topic><topic>Throttling</topic><topic>Transonic flow</topic><topic>Turbulence models</topic><topic>Turbulent flow</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamuraev, V. P.</creatorcontrib><creatorcontrib>Kalinina, A. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Combustion, explosion, and shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamuraev, V. P.</au><au>Kalinina, A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combustion of Ethylene and Kerosene in a Supersonic Flow at Low Mach Numbers</atitle><jtitle>Combustion, explosion, and shock waves</jtitle><stitle>Combust Explos Shock Waves</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>58</volume><issue>4</issue><spage>450</spage><epage>456</epage><pages>450-456</pages><issn>0010-5082</issn><eissn>1573-8345</eissn><abstract>Combustion of ethylene and kerosene in flows with Mach numbers M   2 is numerically studied. Flow throttling with the use of a side jet of compressed air is provided for igniting the fuel injected through an axial injector and for supporting its combustion. The Reynolds-averaged Navier–Stokes equations closed with the  –  turbulence model are solved. Fuel combustion is modeled by one reaction. The possibility of formation of a transonic flow is considered. The gas-dynamic structure of the flow in the channel in the case of kerosene combustion is investigated for the Mach number M = 1.7 and stagnation temperatures of 1400 and 1500 K. The computations are performed for various values of the limiter of turbulent kinetic energy generation.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0010508222040074</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-5082
ispartof Combustion, explosion, and shock waves, 2022-08, Vol.58 (4), p.450-456
issn 0010-5082
1573-8345
language eng
recordid cdi_proquest_journals_2715808867
source Springer Nature - Complete Springer Journals
subjects Classical and Continuum Physics
Classical Mechanics
Compressed air
Control
Dynamical Systems
Engineering
Ethylene
Fuel combustion
Kerosene
Kinetic energy
Mach number
Physical Chemistry
Physics
Physics and Astronomy
Reynolds averaged Navier-Stokes method
Supersonic flow
Throttling
Transonic flow
Turbulence models
Turbulent flow
Vibration
title Combustion of Ethylene and Kerosene in a Supersonic Flow at Low Mach Numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combustion%20of%20Ethylene%20and%20Kerosene%20in%20a%20Supersonic%20Flow%20at%20Low%20Mach%20Numbers&rft.jtitle=Combustion,%20explosion,%20and%20shock%20waves&rft.au=Zamuraev,%20V.%20P.&rft.date=2022-08-01&rft.volume=58&rft.issue=4&rft.spage=450&rft.epage=456&rft.pages=450-456&rft.issn=0010-5082&rft.eissn=1573-8345&rft_id=info:doi/10.1134/S0010508222040074&rft_dat=%3Cproquest_cross%3E2715808867%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715808867&rft_id=info:pmid/&rfr_iscdi=true