PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation

A personification is a figure of speech that endows inanimate entities with properties and actions typically seen as requiring animacy. In this paper, we explore the task of personification generation. To this end, we propose PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-09
Hauptverfasser: Keh, Sedrick Scott, Lu, Kevin, Gangal, Varun, Feng, Steven Y, Jhamtani, Harsh, Alikhani, Malihe, Hovy, Eduard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Keh, Sedrick Scott
Lu, Kevin
Gangal, Varun
Feng, Steven Y
Jhamtani, Harsh
Alikhani, Malihe
Hovy, Eduard
description A personification is a figure of speech that endows inanimate entities with properties and actions typically seen as requiring animacy. In this paper, we explore the task of personification generation. To this end, we propose PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation. We curate a corpus of personifications called PersonifCorp, together with automatically generated de-personified literalizations of these personifications. We demonstrate the usefulness of this parallel corpus by training a seq2seq model to personify a given literal input. Both automatic and human evaluations show that fine-tuning with PersonifCorp leads to significant gains in personification-related qualities such as animacy and interestingness. A detailed qualitative analysis also highlights key strengths and imperfections of PINEAPPLE over baselines, demonstrating a strong ability to generate diverse and creative personifications that enhance the overall appeal of a sentence.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2715606852</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715606852</sourcerecordid><originalsourceid>FETCH-proquest_journals_27156068523</originalsourceid><addsrcrecordid>eNqNy7EKwjAUheEgCIr6DhechZraKm4iEYUiGdzlWm81Um9skgp9e62Is9MZ_u90RF_G8XSymEnZEyPvb1EUyXQukyTui6fe7dVK60wtQZPzlk3RGL7Abo9s7hgIFAcTDHk4NbDKq9q4tmt0WJZU_l4mx2AswxkDQmEdZISOW6r4ipzTGS7E5D5qKLoFlp5G3x2I8UYd1tvJw9mqJh-ON1s7fqejnE-TNEoXiYz_Uy9CVUyK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715606852</pqid></control><display><type>article</type><title>PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation</title><source>Free E- Journals</source><creator>Keh, Sedrick Scott ; Lu, Kevin ; Gangal, Varun ; Feng, Steven Y ; Jhamtani, Harsh ; Alikhani, Malihe ; Hovy, Eduard</creator><creatorcontrib>Keh, Sedrick Scott ; Lu, Kevin ; Gangal, Varun ; Feng, Steven Y ; Jhamtani, Harsh ; Alikhani, Malihe ; Hovy, Eduard</creatorcontrib><description>A personification is a figure of speech that endows inanimate entities with properties and actions typically seen as requiring animacy. In this paper, we explore the task of personification generation. To this end, we propose PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation. We curate a corpus of personifications called PersonifCorp, together with automatically generated de-personified literalizations of these personifications. We demonstrate the usefulness of this parallel corpus by training a seq2seq model to personify a given literal input. Both automatic and human evaluations show that fine-tuning with PersonifCorp leads to significant gains in personification-related qualities such as animacy and interestingness. A detailed qualitative analysis also highlights key strengths and imperfections of PINEAPPLE over baselines, demonstrating a strong ability to generate diverse and creative personifications that enhance the overall appeal of a sentence.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data acquisition ; Learning ; Pineapples ; Qualitative analysis</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Keh, Sedrick Scott</creatorcontrib><creatorcontrib>Lu, Kevin</creatorcontrib><creatorcontrib>Gangal, Varun</creatorcontrib><creatorcontrib>Feng, Steven Y</creatorcontrib><creatorcontrib>Jhamtani, Harsh</creatorcontrib><creatorcontrib>Alikhani, Malihe</creatorcontrib><creatorcontrib>Hovy, Eduard</creatorcontrib><title>PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation</title><title>arXiv.org</title><description>A personification is a figure of speech that endows inanimate entities with properties and actions typically seen as requiring animacy. In this paper, we explore the task of personification generation. To this end, we propose PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation. We curate a corpus of personifications called PersonifCorp, together with automatically generated de-personified literalizations of these personifications. We demonstrate the usefulness of this parallel corpus by training a seq2seq model to personify a given literal input. Both automatic and human evaluations show that fine-tuning with PersonifCorp leads to significant gains in personification-related qualities such as animacy and interestingness. A detailed qualitative analysis also highlights key strengths and imperfections of PINEAPPLE over baselines, demonstrating a strong ability to generate diverse and creative personifications that enhance the overall appeal of a sentence.</description><subject>Data acquisition</subject><subject>Learning</subject><subject>Pineapples</subject><subject>Qualitative analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNy7EKwjAUheEgCIr6DhechZraKm4iEYUiGdzlWm81Um9skgp9e62Is9MZ_u90RF_G8XSymEnZEyPvb1EUyXQukyTui6fe7dVK60wtQZPzlk3RGL7Abo9s7hgIFAcTDHk4NbDKq9q4tmt0WJZU_l4mx2AswxkDQmEdZISOW6r4ipzTGS7E5D5qKLoFlp5G3x2I8UYd1tvJw9mqJh-ON1s7fqejnE-TNEoXiYz_Uy9CVUyK</recordid><startdate>20220916</startdate><enddate>20220916</enddate><creator>Keh, Sedrick Scott</creator><creator>Lu, Kevin</creator><creator>Gangal, Varun</creator><creator>Feng, Steven Y</creator><creator>Jhamtani, Harsh</creator><creator>Alikhani, Malihe</creator><creator>Hovy, Eduard</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220916</creationdate><title>PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation</title><author>Keh, Sedrick Scott ; Lu, Kevin ; Gangal, Varun ; Feng, Steven Y ; Jhamtani, Harsh ; Alikhani, Malihe ; Hovy, Eduard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27156068523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Data acquisition</topic><topic>Learning</topic><topic>Pineapples</topic><topic>Qualitative analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Keh, Sedrick Scott</creatorcontrib><creatorcontrib>Lu, Kevin</creatorcontrib><creatorcontrib>Gangal, Varun</creatorcontrib><creatorcontrib>Feng, Steven Y</creatorcontrib><creatorcontrib>Jhamtani, Harsh</creatorcontrib><creatorcontrib>Alikhani, Malihe</creatorcontrib><creatorcontrib>Hovy, Eduard</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Keh, Sedrick Scott</au><au>Lu, Kevin</au><au>Gangal, Varun</au><au>Feng, Steven Y</au><au>Jhamtani, Harsh</au><au>Alikhani, Malihe</au><au>Hovy, Eduard</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation</atitle><jtitle>arXiv.org</jtitle><date>2022-09-16</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>A personification is a figure of speech that endows inanimate entities with properties and actions typically seen as requiring animacy. In this paper, we explore the task of personification generation. To this end, we propose PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation. We curate a corpus of personifications called PersonifCorp, together with automatically generated de-personified literalizations of these personifications. We demonstrate the usefulness of this parallel corpus by training a seq2seq model to personify a given literal input. Both automatic and human evaluations show that fine-tuning with PersonifCorp leads to significant gains in personification-related qualities such as animacy and interestingness. A detailed qualitative analysis also highlights key strengths and imperfections of PINEAPPLE over baselines, demonstrating a strong ability to generate diverse and creative personifications that enhance the overall appeal of a sentence.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2715606852
source Free E- Journals
subjects Data acquisition
Learning
Pineapples
Qualitative analysis
title PINEAPPLE: Personifying INanimate Entities by Acquiring Parallel Personification data for Learning Enhanced generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=PINEAPPLE:%20Personifying%20INanimate%20Entities%20by%20Acquiring%20Parallel%20Personification%20data%20for%20Learning%20Enhanced%20generation&rft.jtitle=arXiv.org&rft.au=Keh,%20Sedrick%20Scott&rft.date=2022-09-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2715606852%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715606852&rft_id=info:pmid/&rfr_iscdi=true