Strongly Coupled Interfacial Engineering Inspired by Robotic Arms Enable High‐Performance Sodium‐Ion Capacitors

Interfacial coupling strategy has allured extensive attention for the possibility to endow active electrode materials with superior performance. However, the design of strong coupling engineering with interfacial evolution during electrochemical processes is very challenging. Herein, inspired by the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-09, Vol.32 (38), p.n/a
Hauptverfasser: Song, Zirui, Zhang, Guiyu, Deng, Xinglan, Tian, Ye, Xiao, Xuhuan, Deng, Wentao, Hou, Hongshuai, Zou, Guoqiang, Ji, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 38
container_start_page
container_title Advanced functional materials
container_volume 32
creator Song, Zirui
Zhang, Guiyu
Deng, Xinglan
Tian, Ye
Xiao, Xuhuan
Deng, Wentao
Hou, Hongshuai
Zou, Guoqiang
Ji, Xiaobo
description Interfacial coupling strategy has allured extensive attention for the possibility to endow active electrode materials with superior performance. However, the design of strong coupling engineering with interfacial evolution during electrochemical processes is very challenging. Herein, inspired by the powerful robotic arms and density functional theory calculations, multiple functional groups identified with intense affinity to V atom are successfully grafted on carbon nanotubes (CNTs), thereby in situ building robust interfacial bonds (VOC and VC) to tightly anchor VS4 particles. The largely decreased band gaps and energy barriers show the fortified conductivity of VS4‐CNT heterostructure. Besides, the spacial confinement effect induced by interfacial linkages substantively enhances the mechanical properties to inhibit structural collapse, and restrains the dissolution of polysulfides as verified by molecular dynamics simulations, thus prolonging life span. Excellent energy density of 105.5 Wh kg–1 can be delivered after assembling full sodium‐ion capacitors (activated carbon//VS4‐CNT). Significantly, the reversible interfacial bonds confirmed by various ex situ characteristics during discharge/charge processes hold the key to remarkable sodium storage ability and prominent initial coulombic efficiency. More impressively, strong interfacial coupling effect can establish synergistic soft‐rigid integrated solid‐electrolyte interphase film, which is conducive to elevating the electrochemical performance of electrodes, convincingly constructing advanced sodium‐ion capacitors. Strongly coupled interfaces are systematically exploited in this article. Directional design of interfacial bonding engineering and relative evolution during electrochemical processes are elucidated clearly, offering guidelines to construct advanced anodes for high‐performance sodium‐ion capacitors.
doi_str_mv 10.1002/adfm.202205453
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2715388921</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715388921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3173-33634a2871db51482200d74465b3729e2e52a81086d2a0f4cbffd3420dc542be3</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKtb1wHXrfmbny7LWG2holgFdyEzyYwpM8mYzCCz8xF8Rp_ElEpdurqXw3fO5R4ALjGaYoTItZBlMyWIEBSxiB6BEY5xPKGIpMeHHb-egjPvtwjhJKFsBPymc9ZU9QAz27e1knBlOuVKUWhRw4WptFHKaVMF3bfaBSAf4JPNbacLOHeND5DIawWXunr7_vx6DGbrGmEKBTdW6r4J4soamIk2hHbW-XNwUoraq4vfOQYvt4vnbDlZP9ytsvl6UlCc0AmlMWWCpAmWeYRZGh5DMmEsjnKakJkiKiIixSiNJRGoZEVelpIygmQRMZIrOgZX-9zW2fde-Y5vbe9MOMlJgiOapjOCAzXdU4Wz3jtV8tbpRriBY8R3xfJdsfxQbDDM9oYPXavhH5rPb27v_7w_H9h-sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715388921</pqid></control><display><type>article</type><title>Strongly Coupled Interfacial Engineering Inspired by Robotic Arms Enable High‐Performance Sodium‐Ion Capacitors</title><source>Wiley Journals</source><creator>Song, Zirui ; Zhang, Guiyu ; Deng, Xinglan ; Tian, Ye ; Xiao, Xuhuan ; Deng, Wentao ; Hou, Hongshuai ; Zou, Guoqiang ; Ji, Xiaobo</creator><creatorcontrib>Song, Zirui ; Zhang, Guiyu ; Deng, Xinglan ; Tian, Ye ; Xiao, Xuhuan ; Deng, Wentao ; Hou, Hongshuai ; Zou, Guoqiang ; Ji, Xiaobo</creatorcontrib><description>Interfacial coupling strategy has allured extensive attention for the possibility to endow active electrode materials with superior performance. However, the design of strong coupling engineering with interfacial evolution during electrochemical processes is very challenging. Herein, inspired by the powerful robotic arms and density functional theory calculations, multiple functional groups identified with intense affinity to V atom are successfully grafted on carbon nanotubes (CNTs), thereby in situ building robust interfacial bonds (VOC and VC) to tightly anchor VS4 particles. The largely decreased band gaps and energy barriers show the fortified conductivity of VS4‐CNT heterostructure. Besides, the spacial confinement effect induced by interfacial linkages substantively enhances the mechanical properties to inhibit structural collapse, and restrains the dissolution of polysulfides as verified by molecular dynamics simulations, thus prolonging life span. Excellent energy density of 105.5 Wh kg–1 can be delivered after assembling full sodium‐ion capacitors (activated carbon//VS4‐CNT). Significantly, the reversible interfacial bonds confirmed by various ex situ characteristics during discharge/charge processes hold the key to remarkable sodium storage ability and prominent initial coulombic efficiency. More impressively, strong interfacial coupling effect can establish synergistic soft‐rigid integrated solid‐electrolyte interphase film, which is conducive to elevating the electrochemical performance of electrodes, convincingly constructing advanced sodium‐ion capacitors. Strongly coupled interfaces are systematically exploited in this article. Directional design of interfacial bonding engineering and relative evolution during electrochemical processes are elucidated clearly, offering guidelines to construct advanced anodes for high‐performance sodium‐ion capacitors.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202205453</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Activated carbon ; Bonding strength ; Capacitors ; Carbon nanotubes ; coupled interfaces ; Density functional theory ; Electrochemical analysis ; Electrode materials ; Electrodes ; Energy gap ; Functional groups ; Heterostructures ; interfacial bonding ; Manufacturing engineering ; Materials science ; Mechanical properties ; Molecular dynamics ; Robot arms ; Sodium ; sodium‐ion capacitors ; transition metal sulfides</subject><ispartof>Advanced functional materials, 2022-09, Vol.32 (38), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3173-33634a2871db51482200d74465b3729e2e52a81086d2a0f4cbffd3420dc542be3</citedby><cites>FETCH-LOGICAL-c3173-33634a2871db51482200d74465b3729e2e52a81086d2a0f4cbffd3420dc542be3</cites><orcidid>0000-0002-5405-7913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202205453$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202205453$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Song, Zirui</creatorcontrib><creatorcontrib>Zhang, Guiyu</creatorcontrib><creatorcontrib>Deng, Xinglan</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Xiao, Xuhuan</creatorcontrib><creatorcontrib>Deng, Wentao</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><title>Strongly Coupled Interfacial Engineering Inspired by Robotic Arms Enable High‐Performance Sodium‐Ion Capacitors</title><title>Advanced functional materials</title><description>Interfacial coupling strategy has allured extensive attention for the possibility to endow active electrode materials with superior performance. However, the design of strong coupling engineering with interfacial evolution during electrochemical processes is very challenging. Herein, inspired by the powerful robotic arms and density functional theory calculations, multiple functional groups identified with intense affinity to V atom are successfully grafted on carbon nanotubes (CNTs), thereby in situ building robust interfacial bonds (VOC and VC) to tightly anchor VS4 particles. The largely decreased band gaps and energy barriers show the fortified conductivity of VS4‐CNT heterostructure. Besides, the spacial confinement effect induced by interfacial linkages substantively enhances the mechanical properties to inhibit structural collapse, and restrains the dissolution of polysulfides as verified by molecular dynamics simulations, thus prolonging life span. Excellent energy density of 105.5 Wh kg–1 can be delivered after assembling full sodium‐ion capacitors (activated carbon//VS4‐CNT). Significantly, the reversible interfacial bonds confirmed by various ex situ characteristics during discharge/charge processes hold the key to remarkable sodium storage ability and prominent initial coulombic efficiency. More impressively, strong interfacial coupling effect can establish synergistic soft‐rigid integrated solid‐electrolyte interphase film, which is conducive to elevating the electrochemical performance of electrodes, convincingly constructing advanced sodium‐ion capacitors. Strongly coupled interfaces are systematically exploited in this article. Directional design of interfacial bonding engineering and relative evolution during electrochemical processes are elucidated clearly, offering guidelines to construct advanced anodes for high‐performance sodium‐ion capacitors.</description><subject>Activated carbon</subject><subject>Bonding strength</subject><subject>Capacitors</subject><subject>Carbon nanotubes</subject><subject>coupled interfaces</subject><subject>Density functional theory</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy gap</subject><subject>Functional groups</subject><subject>Heterostructures</subject><subject>interfacial bonding</subject><subject>Manufacturing engineering</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Molecular dynamics</subject><subject>Robot arms</subject><subject>Sodium</subject><subject>sodium‐ion capacitors</subject><subject>transition metal sulfides</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKtb1wHXrfmbny7LWG2holgFdyEzyYwpM8mYzCCz8xF8Rp_ElEpdurqXw3fO5R4ALjGaYoTItZBlMyWIEBSxiB6BEY5xPKGIpMeHHb-egjPvtwjhJKFsBPymc9ZU9QAz27e1knBlOuVKUWhRw4WptFHKaVMF3bfaBSAf4JPNbacLOHeND5DIawWXunr7_vx6DGbrGmEKBTdW6r4J4soamIk2hHbW-XNwUoraq4vfOQYvt4vnbDlZP9ytsvl6UlCc0AmlMWWCpAmWeYRZGh5DMmEsjnKakJkiKiIixSiNJRGoZEVelpIygmQRMZIrOgZX-9zW2fde-Y5vbe9MOMlJgiOapjOCAzXdU4Wz3jtV8tbpRriBY8R3xfJdsfxQbDDM9oYPXavhH5rPb27v_7w_H9h-sg</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Song, Zirui</creator><creator>Zhang, Guiyu</creator><creator>Deng, Xinglan</creator><creator>Tian, Ye</creator><creator>Xiao, Xuhuan</creator><creator>Deng, Wentao</creator><creator>Hou, Hongshuai</creator><creator>Zou, Guoqiang</creator><creator>Ji, Xiaobo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5405-7913</orcidid></search><sort><creationdate>20220901</creationdate><title>Strongly Coupled Interfacial Engineering Inspired by Robotic Arms Enable High‐Performance Sodium‐Ion Capacitors</title><author>Song, Zirui ; Zhang, Guiyu ; Deng, Xinglan ; Tian, Ye ; Xiao, Xuhuan ; Deng, Wentao ; Hou, Hongshuai ; Zou, Guoqiang ; Ji, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3173-33634a2871db51482200d74465b3729e2e52a81086d2a0f4cbffd3420dc542be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Activated carbon</topic><topic>Bonding strength</topic><topic>Capacitors</topic><topic>Carbon nanotubes</topic><topic>coupled interfaces</topic><topic>Density functional theory</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy gap</topic><topic>Functional groups</topic><topic>Heterostructures</topic><topic>interfacial bonding</topic><topic>Manufacturing engineering</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Molecular dynamics</topic><topic>Robot arms</topic><topic>Sodium</topic><topic>sodium‐ion capacitors</topic><topic>transition metal sulfides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Zirui</creatorcontrib><creatorcontrib>Zhang, Guiyu</creatorcontrib><creatorcontrib>Deng, Xinglan</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Xiao, Xuhuan</creatorcontrib><creatorcontrib>Deng, Wentao</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Zirui</au><au>Zhang, Guiyu</au><au>Deng, Xinglan</au><au>Tian, Ye</au><au>Xiao, Xuhuan</au><au>Deng, Wentao</au><au>Hou, Hongshuai</au><au>Zou, Guoqiang</au><au>Ji, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strongly Coupled Interfacial Engineering Inspired by Robotic Arms Enable High‐Performance Sodium‐Ion Capacitors</atitle><jtitle>Advanced functional materials</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>32</volume><issue>38</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Interfacial coupling strategy has allured extensive attention for the possibility to endow active electrode materials with superior performance. However, the design of strong coupling engineering with interfacial evolution during electrochemical processes is very challenging. Herein, inspired by the powerful robotic arms and density functional theory calculations, multiple functional groups identified with intense affinity to V atom are successfully grafted on carbon nanotubes (CNTs), thereby in situ building robust interfacial bonds (VOC and VC) to tightly anchor VS4 particles. The largely decreased band gaps and energy barriers show the fortified conductivity of VS4‐CNT heterostructure. Besides, the spacial confinement effect induced by interfacial linkages substantively enhances the mechanical properties to inhibit structural collapse, and restrains the dissolution of polysulfides as verified by molecular dynamics simulations, thus prolonging life span. Excellent energy density of 105.5 Wh kg–1 can be delivered after assembling full sodium‐ion capacitors (activated carbon//VS4‐CNT). Significantly, the reversible interfacial bonds confirmed by various ex situ characteristics during discharge/charge processes hold the key to remarkable sodium storage ability and prominent initial coulombic efficiency. More impressively, strong interfacial coupling effect can establish synergistic soft‐rigid integrated solid‐electrolyte interphase film, which is conducive to elevating the electrochemical performance of electrodes, convincingly constructing advanced sodium‐ion capacitors. Strongly coupled interfaces are systematically exploited in this article. Directional design of interfacial bonding engineering and relative evolution during electrochemical processes are elucidated clearly, offering guidelines to construct advanced anodes for high‐performance sodium‐ion capacitors.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202205453</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-5405-7913</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2022-09, Vol.32 (38), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2715388921
source Wiley Journals
subjects Activated carbon
Bonding strength
Capacitors
Carbon nanotubes
coupled interfaces
Density functional theory
Electrochemical analysis
Electrode materials
Electrodes
Energy gap
Functional groups
Heterostructures
interfacial bonding
Manufacturing engineering
Materials science
Mechanical properties
Molecular dynamics
Robot arms
Sodium
sodium‐ion capacitors
transition metal sulfides
title Strongly Coupled Interfacial Engineering Inspired by Robotic Arms Enable High‐Performance Sodium‐Ion Capacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strongly%20Coupled%20Interfacial%20Engineering%20Inspired%20by%20Robotic%20Arms%20Enable%20High%E2%80%90Performance%20Sodium%E2%80%90Ion%20Capacitors&rft.jtitle=Advanced%20functional%20materials&rft.au=Song,%20Zirui&rft.date=2022-09-01&rft.volume=32&rft.issue=38&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202205453&rft_dat=%3Cproquest_cross%3E2715388921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715388921&rft_id=info:pmid/&rfr_iscdi=true