Evaluating (weighted) dynamic treatment effects by double machine learning

Summary We consider evaluating the causal effects of dynamic treatments, i.e., of mul-tiple treatment sequences in various periods, based on double machine learning to control for observed, time-varying covariates in a data-driven way under a selection-on-observables assumption. To this end, we make...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The econometrics journal 2022-09, Vol.25 (3), p.628-648
Hauptverfasser: Bodory, Hugo, Huber, Martin, Lafférs, Lukáš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 648
container_issue 3
container_start_page 628
container_title The econometrics journal
container_volume 25
creator Bodory, Hugo
Huber, Martin
Lafférs, Lukáš
description Summary We consider evaluating the causal effects of dynamic treatments, i.e., of mul-tiple treatment sequences in various periods, based on double machine learning to control for observed, time-varying covariates in a data-driven way under a selection-on-observables assumption. To this end, we make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications of the dynamic outcome and treatment models. This robustness property permits approximating outcome and treatment models by double machine learning even under high-dimensional covariates. In addition to effect estimation for the total population, we consider weighted estimation that permits assessing dynamic treatment effects in specific subgroups, e.g., among those treated in the first treatment period. We demonstrate that the estimators are asymptotically normal and $\sqrt{n}$-consistent under specific regularity conditions and investigate their finite sample properties in a simulation study. Finally, we apply the methods to the Job Corps study.
doi_str_mv 10.1093/ectj/utac018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2715359345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/ectj/utac018</oup_id><sourcerecordid>2715359345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-4d9df4a9a73031b4dbce4655bd3517fded7ec6b590958ecef85e53a9c786082d3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqzgcIuFDBscnkMpOllHqj4EbB3ZBJTtopc6lJRunbO2VEd67OWXznP_AjdE7JLSWKzcDEzayP2hCaH6AJZTJPeMreD3_3lB6jkxA2hBDKKZ-g58Wnrnsdq3aFr76gWq0j2Gtsd61uKoOjBx0baCMG54b4gMsdtl1f1oAbbdZVC7gG7dvh_hQdOV0HOPuZU_R2v3idPybLl4en-d0yMUzRmHCrrONa6YwRRktuSwNcClFaJmjmLNgMjCyFIkrkYMDlAgTTymS5JHlq2RRdjLlb3330EGKx6XrfDi-LNKOCCcW4GNTNqIzvQvDgiq2vGu13BSXFvq1i31bx09bA8cjBdG0V_nBOFUuVlHIglyPp-u3_Yd8D-ndl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715359345</pqid></control><display><type>article</type><title>Evaluating (weighted) dynamic treatment effects by double machine learning</title><source>EBSCOhost Business Source Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bodory, Hugo ; Huber, Martin ; Lafférs, Lukáš</creator><creatorcontrib>Bodory, Hugo ; Huber, Martin ; Lafférs, Lukáš</creatorcontrib><description>Summary We consider evaluating the causal effects of dynamic treatments, i.e., of mul-tiple treatment sequences in various periods, based on double machine learning to control for observed, time-varying covariates in a data-driven way under a selection-on-observables assumption. To this end, we make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications of the dynamic outcome and treatment models. This robustness property permits approximating outcome and treatment models by double machine learning even under high-dimensional covariates. In addition to effect estimation for the total population, we consider weighted estimation that permits assessing dynamic treatment effects in specific subgroups, e.g., among those treated in the first treatment period. We demonstrate that the estimators are asymptotically normal and $\sqrt{n}$-consistent under specific regularity conditions and investigate their finite sample properties in a simulation study. Finally, we apply the methods to the Job Corps study.</description><identifier>ISSN: 1368-4221</identifier><identifier>EISSN: 1368-423X</identifier><identifier>DOI: 10.1093/ectj/utac018</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Machine learning ; Robustness ; Sequences ; Simulation ; Treatment methods</subject><ispartof>The econometrics journal, 2022-09, Vol.25 (3), p.628-648</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Royal Economic Society. 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Royal Economic Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-4d9df4a9a73031b4dbce4655bd3517fded7ec6b590958ecef85e53a9c786082d3</citedby><cites>FETCH-LOGICAL-c391t-4d9df4a9a73031b4dbce4655bd3517fded7ec6b590958ecef85e53a9c786082d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Bodory, Hugo</creatorcontrib><creatorcontrib>Huber, Martin</creatorcontrib><creatorcontrib>Lafférs, Lukáš</creatorcontrib><title>Evaluating (weighted) dynamic treatment effects by double machine learning</title><title>The econometrics journal</title><description>Summary We consider evaluating the causal effects of dynamic treatments, i.e., of mul-tiple treatment sequences in various periods, based on double machine learning to control for observed, time-varying covariates in a data-driven way under a selection-on-observables assumption. To this end, we make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications of the dynamic outcome and treatment models. This robustness property permits approximating outcome and treatment models by double machine learning even under high-dimensional covariates. In addition to effect estimation for the total population, we consider weighted estimation that permits assessing dynamic treatment effects in specific subgroups, e.g., among those treated in the first treatment period. We demonstrate that the estimators are asymptotically normal and $\sqrt{n}$-consistent under specific regularity conditions and investigate their finite sample properties in a simulation study. Finally, we apply the methods to the Job Corps study.</description><subject>Machine learning</subject><subject>Robustness</subject><subject>Sequences</subject><subject>Simulation</subject><subject>Treatment methods</subject><issn>1368-4221</issn><issn>1368-423X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqzgcIuFDBscnkMpOllHqj4EbB3ZBJTtopc6lJRunbO2VEd67OWXznP_AjdE7JLSWKzcDEzayP2hCaH6AJZTJPeMreD3_3lB6jkxA2hBDKKZ-g58Wnrnsdq3aFr76gWq0j2Gtsd61uKoOjBx0baCMG54b4gMsdtl1f1oAbbdZVC7gG7dvh_hQdOV0HOPuZU_R2v3idPybLl4en-d0yMUzRmHCrrONa6YwRRktuSwNcClFaJmjmLNgMjCyFIkrkYMDlAgTTymS5JHlq2RRdjLlb3330EGKx6XrfDi-LNKOCCcW4GNTNqIzvQvDgiq2vGu13BSXFvq1i31bx09bA8cjBdG0V_nBOFUuVlHIglyPp-u3_Yd8D-ndl</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Bodory, Hugo</creator><creator>Huber, Martin</creator><creator>Lafférs, Lukáš</creator><general>Oxford University Press</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20220901</creationdate><title>Evaluating (weighted) dynamic treatment effects by double machine learning</title><author>Bodory, Hugo ; Huber, Martin ; Lafférs, Lukáš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-4d9df4a9a73031b4dbce4655bd3517fded7ec6b590958ecef85e53a9c786082d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Machine learning</topic><topic>Robustness</topic><topic>Sequences</topic><topic>Simulation</topic><topic>Treatment methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodory, Hugo</creatorcontrib><creatorcontrib>Huber, Martin</creatorcontrib><creatorcontrib>Lafférs, Lukáš</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The econometrics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodory, Hugo</au><au>Huber, Martin</au><au>Lafférs, Lukáš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating (weighted) dynamic treatment effects by double machine learning</atitle><jtitle>The econometrics journal</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>25</volume><issue>3</issue><spage>628</spage><epage>648</epage><pages>628-648</pages><issn>1368-4221</issn><eissn>1368-423X</eissn><abstract>Summary We consider evaluating the causal effects of dynamic treatments, i.e., of mul-tiple treatment sequences in various periods, based on double machine learning to control for observed, time-varying covariates in a data-driven way under a selection-on-observables assumption. To this end, we make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications of the dynamic outcome and treatment models. This robustness property permits approximating outcome and treatment models by double machine learning even under high-dimensional covariates. In addition to effect estimation for the total population, we consider weighted estimation that permits assessing dynamic treatment effects in specific subgroups, e.g., among those treated in the first treatment period. We demonstrate that the estimators are asymptotically normal and $\sqrt{n}$-consistent under specific regularity conditions and investigate their finite sample properties in a simulation study. Finally, we apply the methods to the Job Corps study.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/ectj/utac018</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1368-4221
ispartof The econometrics journal, 2022-09, Vol.25 (3), p.628-648
issn 1368-4221
1368-423X
language eng
recordid cdi_proquest_journals_2715359345
source EBSCOhost Business Source Complete; Oxford University Press Journals All Titles (1996-Current)
subjects Machine learning
Robustness
Sequences
Simulation
Treatment methods
title Evaluating (weighted) dynamic treatment effects by double machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20(weighted)%20dynamic%20treatment%20effects%20by%20double%20machine%20learning&rft.jtitle=The%20econometrics%20journal&rft.au=Bodory,%20Hugo&rft.date=2022-09-01&rft.volume=25&rft.issue=3&rft.spage=628&rft.epage=648&rft.pages=628-648&rft.issn=1368-4221&rft.eissn=1368-423X&rft_id=info:doi/10.1093/ectj/utac018&rft_dat=%3Cproquest_cross%3E2715359345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715359345&rft_id=info:pmid/&rft_oup_id=10.1093/ectj/utac018&rfr_iscdi=true