Evaluating (weighted) dynamic treatment effects by double machine learning
Summary We consider evaluating the causal effects of dynamic treatments, i.e., of mul-tiple treatment sequences in various periods, based on double machine learning to control for observed, time-varying covariates in a data-driven way under a selection-on-observables assumption. To this end, we make...
Gespeichert in:
Veröffentlicht in: | The econometrics journal 2022-09, Vol.25 (3), p.628-648 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 648 |
---|---|
container_issue | 3 |
container_start_page | 628 |
container_title | The econometrics journal |
container_volume | 25 |
creator | Bodory, Hugo Huber, Martin Lafférs, Lukáš |
description | Summary
We consider evaluating the causal effects of dynamic treatments, i.e., of mul-tiple treatment sequences in various periods, based on double machine learning to control for observed, time-varying covariates in a data-driven way under a selection-on-observables assumption. To this end, we make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications of the dynamic outcome and treatment models. This robustness property permits approximating outcome and treatment models by double machine learning even under high-dimensional covariates. In addition to effect estimation for the total population, we consider weighted estimation that permits assessing dynamic treatment effects in specific subgroups, e.g., among those treated in the first treatment period. We demonstrate that the estimators are asymptotically normal and $\sqrt{n}$-consistent under specific regularity conditions and investigate their finite sample properties in a simulation study. Finally, we apply the methods to the Job Corps study. |
doi_str_mv | 10.1093/ectj/utac018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2715359345</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/ectj/utac018</oup_id><sourcerecordid>2715359345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-4d9df4a9a73031b4dbce4655bd3517fded7ec6b590958ecef85e53a9c786082d3</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqzgcIuFDBscnkMpOllHqj4EbB3ZBJTtopc6lJRunbO2VEd67OWXznP_AjdE7JLSWKzcDEzayP2hCaH6AJZTJPeMreD3_3lB6jkxA2hBDKKZ-g58Wnrnsdq3aFr76gWq0j2Gtsd61uKoOjBx0baCMG54b4gMsdtl1f1oAbbdZVC7gG7dvh_hQdOV0HOPuZU_R2v3idPybLl4en-d0yMUzRmHCrrONa6YwRRktuSwNcClFaJmjmLNgMjCyFIkrkYMDlAgTTymS5JHlq2RRdjLlb3330EGKx6XrfDi-LNKOCCcW4GNTNqIzvQvDgiq2vGu13BSXFvq1i31bx09bA8cjBdG0V_nBOFUuVlHIglyPp-u3_Yd8D-ndl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715359345</pqid></control><display><type>article</type><title>Evaluating (weighted) dynamic treatment effects by double machine learning</title><source>EBSCOhost Business Source Complete</source><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Bodory, Hugo ; Huber, Martin ; Lafférs, Lukáš</creator><creatorcontrib>Bodory, Hugo ; Huber, Martin ; Lafférs, Lukáš</creatorcontrib><description>Summary
We consider evaluating the causal effects of dynamic treatments, i.e., of mul-tiple treatment sequences in various periods, based on double machine learning to control for observed, time-varying covariates in a data-driven way under a selection-on-observables assumption. To this end, we make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications of the dynamic outcome and treatment models. This robustness property permits approximating outcome and treatment models by double machine learning even under high-dimensional covariates. In addition to effect estimation for the total population, we consider weighted estimation that permits assessing dynamic treatment effects in specific subgroups, e.g., among those treated in the first treatment period. We demonstrate that the estimators are asymptotically normal and $\sqrt{n}$-consistent under specific regularity conditions and investigate their finite sample properties in a simulation study. Finally, we apply the methods to the Job Corps study.</description><identifier>ISSN: 1368-4221</identifier><identifier>EISSN: 1368-423X</identifier><identifier>DOI: 10.1093/ectj/utac018</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Machine learning ; Robustness ; Sequences ; Simulation ; Treatment methods</subject><ispartof>The econometrics journal, 2022-09, Vol.25 (3), p.628-648</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Royal Economic Society. 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of Royal Economic Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-4d9df4a9a73031b4dbce4655bd3517fded7ec6b590958ecef85e53a9c786082d3</citedby><cites>FETCH-LOGICAL-c391t-4d9df4a9a73031b4dbce4655bd3517fded7ec6b590958ecef85e53a9c786082d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids></links><search><creatorcontrib>Bodory, Hugo</creatorcontrib><creatorcontrib>Huber, Martin</creatorcontrib><creatorcontrib>Lafférs, Lukáš</creatorcontrib><title>Evaluating (weighted) dynamic treatment effects by double machine learning</title><title>The econometrics journal</title><description>Summary
We consider evaluating the causal effects of dynamic treatments, i.e., of mul-tiple treatment sequences in various periods, based on double machine learning to control for observed, time-varying covariates in a data-driven way under a selection-on-observables assumption. To this end, we make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications of the dynamic outcome and treatment models. This robustness property permits approximating outcome and treatment models by double machine learning even under high-dimensional covariates. In addition to effect estimation for the total population, we consider weighted estimation that permits assessing dynamic treatment effects in specific subgroups, e.g., among those treated in the first treatment period. We demonstrate that the estimators are asymptotically normal and $\sqrt{n}$-consistent under specific regularity conditions and investigate their finite sample properties in a simulation study. Finally, we apply the methods to the Job Corps study.</description><subject>Machine learning</subject><subject>Robustness</subject><subject>Sequences</subject><subject>Simulation</subject><subject>Treatment methods</subject><issn>1368-4221</issn><issn>1368-423X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqzgcIuFDBscnkMpOllHqj4EbB3ZBJTtopc6lJRunbO2VEd67OWXznP_AjdE7JLSWKzcDEzayP2hCaH6AJZTJPeMreD3_3lB6jkxA2hBDKKZ-g58Wnrnsdq3aFr76gWq0j2Gtsd61uKoOjBx0baCMG54b4gMsdtl1f1oAbbdZVC7gG7dvh_hQdOV0HOPuZU_R2v3idPybLl4en-d0yMUzRmHCrrONa6YwRRktuSwNcClFaJmjmLNgMjCyFIkrkYMDlAgTTymS5JHlq2RRdjLlb3330EGKx6XrfDi-LNKOCCcW4GNTNqIzvQvDgiq2vGu13BSXFvq1i31bx09bA8cjBdG0V_nBOFUuVlHIglyPp-u3_Yd8D-ndl</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Bodory, Hugo</creator><creator>Huber, Martin</creator><creator>Lafférs, Lukáš</creator><general>Oxford University Press</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20220901</creationdate><title>Evaluating (weighted) dynamic treatment effects by double machine learning</title><author>Bodory, Hugo ; Huber, Martin ; Lafférs, Lukáš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-4d9df4a9a73031b4dbce4655bd3517fded7ec6b590958ecef85e53a9c786082d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Machine learning</topic><topic>Robustness</topic><topic>Sequences</topic><topic>Simulation</topic><topic>Treatment methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodory, Hugo</creatorcontrib><creatorcontrib>Huber, Martin</creatorcontrib><creatorcontrib>Lafférs, Lukáš</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>The econometrics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodory, Hugo</au><au>Huber, Martin</au><au>Lafférs, Lukáš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating (weighted) dynamic treatment effects by double machine learning</atitle><jtitle>The econometrics journal</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>25</volume><issue>3</issue><spage>628</spage><epage>648</epage><pages>628-648</pages><issn>1368-4221</issn><eissn>1368-423X</eissn><abstract>Summary
We consider evaluating the causal effects of dynamic treatments, i.e., of mul-tiple treatment sequences in various periods, based on double machine learning to control for observed, time-varying covariates in a data-driven way under a selection-on-observables assumption. To this end, we make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications of the dynamic outcome and treatment models. This robustness property permits approximating outcome and treatment models by double machine learning even under high-dimensional covariates. In addition to effect estimation for the total population, we consider weighted estimation that permits assessing dynamic treatment effects in specific subgroups, e.g., among those treated in the first treatment period. We demonstrate that the estimators are asymptotically normal and $\sqrt{n}$-consistent under specific regularity conditions and investigate their finite sample properties in a simulation study. Finally, we apply the methods to the Job Corps study.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/ectj/utac018</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1368-4221 |
ispartof | The econometrics journal, 2022-09, Vol.25 (3), p.628-648 |
issn | 1368-4221 1368-423X |
language | eng |
recordid | cdi_proquest_journals_2715359345 |
source | EBSCOhost Business Source Complete; Oxford University Press Journals All Titles (1996-Current) |
subjects | Machine learning Robustness Sequences Simulation Treatment methods |
title | Evaluating (weighted) dynamic treatment effects by double machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A11%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20(weighted)%20dynamic%20treatment%20effects%20by%20double%20machine%20learning&rft.jtitle=The%20econometrics%20journal&rft.au=Bodory,%20Hugo&rft.date=2022-09-01&rft.volume=25&rft.issue=3&rft.spage=628&rft.epage=648&rft.pages=628-648&rft.issn=1368-4221&rft.eissn=1368-423X&rft_id=info:doi/10.1093/ectj/utac018&rft_dat=%3Cproquest_cross%3E2715359345%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715359345&rft_id=info:pmid/&rft_oup_id=10.1093/ectj/utac018&rfr_iscdi=true |