Recommendation of Knowledge Graph Convolutional Networks Based on Multilayer BiLSTM and Self-Attention

To solve the problems of cold start, sparse data, and poor recommendation performance in collaborative filtering recommendation, an end-to-end framework algorithm based on BiLSTM and BAGCN was proposed. In order to discover the higher-order structural information in the knowledge graph, stacked BiLS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile information systems 2022-09, Vol.2022, p.1-9
Hauptverfasser: Qiu, Yao, Liu, Yajie, Tong, Ying, Xiang, Xuyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title Mobile information systems
container_volume 2022
creator Qiu, Yao
Liu, Yajie
Tong, Ying
Xiang, Xuyu
description To solve the problems of cold start, sparse data, and poor recommendation performance in collaborative filtering recommendation, an end-to-end framework algorithm based on BiLSTM and BAGCN was proposed. In order to discover the higher-order structural information in the knowledge graph, stacked BiLSTM is used to extract the features of embedded entities and relationships, respectively, and the depth dependence features of user-item interaction matrix are mined. The neighborhood representation of each entity is then calculated by sampling adjacent entities of a fixed size. Then, the self-attention mechanism is used to learn the semantic association between entities and neighboring entities to obtain the final neighborhood information. Aggregators are used to combine neighborhood information and bias information when computing node representations. By extending the sampling of adjacent entities to multihop simulation of higher-order adjacent information, users’ potential long-distance interests can be captured. Compared with the baseline model, the superiority of this method is verified.
doi_str_mv 10.1155/2022/8247846
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2715337554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715337554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-1d73f40e5232f407384b63f7d779199b31cab19a1829b244761bff15a0ec78913</originalsourceid><addsrcrecordid>eNp9kE1PwkAQhjdGExG9-QM28aiVnf1g2yMSRSNoIphwa7btrhRLF3dbCf_ebeDsaSaZ552ZPAhdA7kHEGJACaWDmHIZ8-EJ6kEsRZQQsTwNvZA8IiCX5-jC-zUhQ8KE7CHzoXO72ei6UE1pa2wNfq3trtLFl8YTp7YrPLb1r63abqwq_KabnXXfHj8orwscIrO2aspK7bXDD-V0vphhVRd4risTjZpG113wEp0ZVXl9dax99Pn0uBg_R9P3yct4NI1yxmQTQSGZ4UQLymioksU8GzIjCykTSJKMQa4ySBTENMko53IImTEgFNG5jBNgfXRz2Lt19qfVvknXtnXhb59SCSIcEYIH6u5A5c5677RJt67cKLdPgaSdybQzmR5NBvz2gK_KoGlX_k__AciGcko</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715337554</pqid></control><display><type>article</type><title>Recommendation of Knowledge Graph Convolutional Networks Based on Multilayer BiLSTM and Self-Attention</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Qiu, Yao ; Liu, Yajie ; Tong, Ying ; Xiang, Xuyu</creator><contributor>Aljawarneh, Shadi ; Shadi Aljawarneh</contributor><creatorcontrib>Qiu, Yao ; Liu, Yajie ; Tong, Ying ; Xiang, Xuyu ; Aljawarneh, Shadi ; Shadi Aljawarneh</creatorcontrib><description>To solve the problems of cold start, sparse data, and poor recommendation performance in collaborative filtering recommendation, an end-to-end framework algorithm based on BiLSTM and BAGCN was proposed. In order to discover the higher-order structural information in the knowledge graph, stacked BiLSTM is used to extract the features of embedded entities and relationships, respectively, and the depth dependence features of user-item interaction matrix are mined. The neighborhood representation of each entity is then calculated by sampling adjacent entities of a fixed size. Then, the self-attention mechanism is used to learn the semantic association between entities and neighboring entities to obtain the final neighborhood information. Aggregators are used to combine neighborhood information and bias information when computing node representations. By extending the sampling of adjacent entities to multihop simulation of higher-order adjacent information, users’ potential long-distance interests can be captured. Compared with the baseline model, the superiority of this method is verified.</description><identifier>ISSN: 1574-017X</identifier><identifier>EISSN: 1875-905X</identifier><identifier>DOI: 10.1155/2022/8247846</identifier><language>eng</language><publisher>Amsterdam: Hindawi</publisher><subject>Algorithms ; Artificial neural networks ; Collaboration ; Connectivity ; Feature extraction ; Knowledge ; Knowledge representation ; Methods ; Multilayers ; Neighborhoods ; Neural networks ; Recommender systems ; Sampling ; Semantics ; User behavior</subject><ispartof>Mobile information systems, 2022-09, Vol.2022, p.1-9</ispartof><rights>Copyright © 2022 Yao Qiu et al.</rights><rights>Copyright © 2022 Yao Qiu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-1d73f40e5232f407384b63f7d779199b31cab19a1829b244761bff15a0ec78913</citedby><cites>FETCH-LOGICAL-c337t-1d73f40e5232f407384b63f7d779199b31cab19a1829b244761bff15a0ec78913</cites><orcidid>0000-0002-5148-2666</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Aljawarneh, Shadi</contributor><contributor>Shadi Aljawarneh</contributor><creatorcontrib>Qiu, Yao</creatorcontrib><creatorcontrib>Liu, Yajie</creatorcontrib><creatorcontrib>Tong, Ying</creatorcontrib><creatorcontrib>Xiang, Xuyu</creatorcontrib><title>Recommendation of Knowledge Graph Convolutional Networks Based on Multilayer BiLSTM and Self-Attention</title><title>Mobile information systems</title><description>To solve the problems of cold start, sparse data, and poor recommendation performance in collaborative filtering recommendation, an end-to-end framework algorithm based on BiLSTM and BAGCN was proposed. In order to discover the higher-order structural information in the knowledge graph, stacked BiLSTM is used to extract the features of embedded entities and relationships, respectively, and the depth dependence features of user-item interaction matrix are mined. The neighborhood representation of each entity is then calculated by sampling adjacent entities of a fixed size. Then, the self-attention mechanism is used to learn the semantic association between entities and neighboring entities to obtain the final neighborhood information. Aggregators are used to combine neighborhood information and bias information when computing node representations. By extending the sampling of adjacent entities to multihop simulation of higher-order adjacent information, users’ potential long-distance interests can be captured. Compared with the baseline model, the superiority of this method is verified.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Collaboration</subject><subject>Connectivity</subject><subject>Feature extraction</subject><subject>Knowledge</subject><subject>Knowledge representation</subject><subject>Methods</subject><subject>Multilayers</subject><subject>Neighborhoods</subject><subject>Neural networks</subject><subject>Recommender systems</subject><subject>Sampling</subject><subject>Semantics</subject><subject>User behavior</subject><issn>1574-017X</issn><issn>1875-905X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kE1PwkAQhjdGExG9-QM28aiVnf1g2yMSRSNoIphwa7btrhRLF3dbCf_ebeDsaSaZ552ZPAhdA7kHEGJACaWDmHIZ8-EJ6kEsRZQQsTwNvZA8IiCX5-jC-zUhQ8KE7CHzoXO72ei6UE1pa2wNfq3trtLFl8YTp7YrPLb1r63abqwq_KabnXXfHj8orwscIrO2aspK7bXDD-V0vphhVRd4risTjZpG113wEp0ZVXl9dax99Pn0uBg_R9P3yct4NI1yxmQTQSGZ4UQLymioksU8GzIjCykTSJKMQa4ySBTENMko53IImTEgFNG5jBNgfXRz2Lt19qfVvknXtnXhb59SCSIcEYIH6u5A5c5677RJt67cKLdPgaSdybQzmR5NBvz2gK_KoGlX_k__AciGcko</recordid><startdate>20220907</startdate><enddate>20220907</enddate><creator>Qiu, Yao</creator><creator>Liu, Yajie</creator><creator>Tong, Ying</creator><creator>Xiang, Xuyu</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5148-2666</orcidid></search><sort><creationdate>20220907</creationdate><title>Recommendation of Knowledge Graph Convolutional Networks Based on Multilayer BiLSTM and Self-Attention</title><author>Qiu, Yao ; Liu, Yajie ; Tong, Ying ; Xiang, Xuyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-1d73f40e5232f407384b63f7d779199b31cab19a1829b244761bff15a0ec78913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Collaboration</topic><topic>Connectivity</topic><topic>Feature extraction</topic><topic>Knowledge</topic><topic>Knowledge representation</topic><topic>Methods</topic><topic>Multilayers</topic><topic>Neighborhoods</topic><topic>Neural networks</topic><topic>Recommender systems</topic><topic>Sampling</topic><topic>Semantics</topic><topic>User behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Yao</creatorcontrib><creatorcontrib>Liu, Yajie</creatorcontrib><creatorcontrib>Tong, Ying</creatorcontrib><creatorcontrib>Xiang, Xuyu</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mobile information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Yao</au><au>Liu, Yajie</au><au>Tong, Ying</au><au>Xiang, Xuyu</au><au>Aljawarneh, Shadi</au><au>Shadi Aljawarneh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recommendation of Knowledge Graph Convolutional Networks Based on Multilayer BiLSTM and Self-Attention</atitle><jtitle>Mobile information systems</jtitle><date>2022-09-07</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1574-017X</issn><eissn>1875-905X</eissn><abstract>To solve the problems of cold start, sparse data, and poor recommendation performance in collaborative filtering recommendation, an end-to-end framework algorithm based on BiLSTM and BAGCN was proposed. In order to discover the higher-order structural information in the knowledge graph, stacked BiLSTM is used to extract the features of embedded entities and relationships, respectively, and the depth dependence features of user-item interaction matrix are mined. The neighborhood representation of each entity is then calculated by sampling adjacent entities of a fixed size. Then, the self-attention mechanism is used to learn the semantic association between entities and neighboring entities to obtain the final neighborhood information. Aggregators are used to combine neighborhood information and bias information when computing node representations. By extending the sampling of adjacent entities to multihop simulation of higher-order adjacent information, users’ potential long-distance interests can be captured. Compared with the baseline model, the superiority of this method is verified.</abstract><cop>Amsterdam</cop><pub>Hindawi</pub><doi>10.1155/2022/8247846</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5148-2666</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1574-017X
ispartof Mobile information systems, 2022-09, Vol.2022, p.1-9
issn 1574-017X
1875-905X
language eng
recordid cdi_proquest_journals_2715337554
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Artificial neural networks
Collaboration
Connectivity
Feature extraction
Knowledge
Knowledge representation
Methods
Multilayers
Neighborhoods
Neural networks
Recommender systems
Sampling
Semantics
User behavior
title Recommendation of Knowledge Graph Convolutional Networks Based on Multilayer BiLSTM and Self-Attention
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A35%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recommendation%20of%20Knowledge%20Graph%20Convolutional%20Networks%20Based%20on%20Multilayer%20BiLSTM%20and%20Self-Attention&rft.jtitle=Mobile%20information%20systems&rft.au=Qiu,%20Yao&rft.date=2022-09-07&rft.volume=2022&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1574-017X&rft.eissn=1875-905X&rft_id=info:doi/10.1155/2022/8247846&rft_dat=%3Cproquest_cross%3E2715337554%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715337554&rft_id=info:pmid/&rfr_iscdi=true