Error estimate of a finite element method for an optimal control problem with corner singularity using the stress intensity factor
We consider an optimal control problem for the Poisson equation on a non‐convex polygonal domain with the corner singularity. Previously, we proposed a novel algorithm for the accurate numerical solution for the Poisson equation on a polygonal domain with the domain singularity. Then, we investigate...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2022-11, Vol.38 (6), p.1578-1594 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1594 |
---|---|
container_issue | 6 |
container_start_page | 1578 |
container_title | Numerical methods for partial differential equations |
container_volume | 38 |
creator | Kim, Seokchan Lee, Hyung‐Chun |
description | We consider an optimal control problem for the Poisson equation on a non‐convex polygonal domain with the corner singularity. Previously, we proposed a novel algorithm for the accurate numerical solution for the Poisson equation on a polygonal domain with the domain singularity. Then, we investigated the error estimate and its efficient procedure for the numerical algorithm. In this article, we propose an efficient algorithm and perform an error estimate for a distributed optimal control problem of the Poisson equation. The solutions of the optimality system with such singularity have singular decompositions: regular part plus singular part for each state variable and adjoint variable. The coefficient of the singular function is usually called stress intensity factor and can be computed by the extraction formula. We introduced a modified optimality system which has “zero” stress intensity factors using this stress intensity factor, from whose solutions we can compute very accurate solution of the original optimality system simply by adding a singular part. We give a precise error analysis and provide numerical results which justify the results therein. |
doi_str_mv | 10.1002/num.22824 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2715337486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715337486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2574-2f51b895a640fd8e7710e7c47f24ae5e06b05d2cc317632c9934fb808b7e711c3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqUw8AaWmBjS2o4dJyOqykUqsFCJzUrcY5oqsYvtCHXlyXEoK9O5fef2I3RNyYwSwuZ26GeMlYyfoAklVZkxzopTNCGSVxkV1fs5ughhRwilglYT9L303nkMIbZ9HQE7g2tsWtsmHzrowUbcQ9y6DTaJqy12-xHtsHY2etfhvXdNAvFXG7cp6S14HFr7MXS1b-MBD2OA4xZwiB5CwK2NYMNYMrWOzl-iM1N3Aa7-7BSt75dvi8ds9frwtLhbZZoJyTNmBG3KStQFJ2ZTgpSUgNRcGsZrEECKhogN0zqnssiZrqqcm6YkZSNBUqrzKbo5zk0Xfw7pY7Vzg7dppWKSijyXvCwSdXuktHcheDBq79O__qAoUaPEKkmsfiVO7PzIfrUdHP4H1cv6-djxA1WIf-0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715337486</pqid></control><display><type>article</type><title>Error estimate of a finite element method for an optimal control problem with corner singularity using the stress intensity factor</title><source>Wiley Online Library All Journals</source><creator>Kim, Seokchan ; Lee, Hyung‐Chun</creator><creatorcontrib>Kim, Seokchan ; Lee, Hyung‐Chun</creatorcontrib><description>We consider an optimal control problem for the Poisson equation on a non‐convex polygonal domain with the corner singularity. Previously, we proposed a novel algorithm for the accurate numerical solution for the Poisson equation on a polygonal domain with the domain singularity. Then, we investigated the error estimate and its efficient procedure for the numerical algorithm. In this article, we propose an efficient algorithm and perform an error estimate for a distributed optimal control problem of the Poisson equation. The solutions of the optimality system with such singularity have singular decompositions: regular part plus singular part for each state variable and adjoint variable. The coefficient of the singular function is usually called stress intensity factor and can be computed by the extraction formula. We introduced a modified optimality system which has “zero” stress intensity factors using this stress intensity factor, from whose solutions we can compute very accurate solution of the original optimality system simply by adding a singular part. We give a precise error analysis and provide numerical results which justify the results therein.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22824</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Algorithms ; corner singularity ; Domains ; Error analysis ; Finite element method ; Numerical analysis ; Optimal control ; optimal control problem ; Optimization ; Poisson equation ; Polygons ; Singularities ; stress intensity factor ; Stress intensity factors</subject><ispartof>Numerical methods for partial differential equations, 2022-11, Vol.38 (6), p.1578-1594</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2574-2f51b895a640fd8e7710e7c47f24ae5e06b05d2cc317632c9934fb808b7e711c3</cites><orcidid>0000-0003-4171-3325 ; 0000-0002-3168-3858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22824$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22824$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Kim, Seokchan</creatorcontrib><creatorcontrib>Lee, Hyung‐Chun</creatorcontrib><title>Error estimate of a finite element method for an optimal control problem with corner singularity using the stress intensity factor</title><title>Numerical methods for partial differential equations</title><description>We consider an optimal control problem for the Poisson equation on a non‐convex polygonal domain with the corner singularity. Previously, we proposed a novel algorithm for the accurate numerical solution for the Poisson equation on a polygonal domain with the domain singularity. Then, we investigated the error estimate and its efficient procedure for the numerical algorithm. In this article, we propose an efficient algorithm and perform an error estimate for a distributed optimal control problem of the Poisson equation. The solutions of the optimality system with such singularity have singular decompositions: regular part plus singular part for each state variable and adjoint variable. The coefficient of the singular function is usually called stress intensity factor and can be computed by the extraction formula. We introduced a modified optimality system which has “zero” stress intensity factors using this stress intensity factor, from whose solutions we can compute very accurate solution of the original optimality system simply by adding a singular part. We give a precise error analysis and provide numerical results which justify the results therein.</description><subject>Algorithms</subject><subject>corner singularity</subject><subject>Domains</subject><subject>Error analysis</subject><subject>Finite element method</subject><subject>Numerical analysis</subject><subject>Optimal control</subject><subject>optimal control problem</subject><subject>Optimization</subject><subject>Poisson equation</subject><subject>Polygons</subject><subject>Singularities</subject><subject>stress intensity factor</subject><subject>Stress intensity factors</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEqUw8AaWmBjS2o4dJyOqykUqsFCJzUrcY5oqsYvtCHXlyXEoK9O5fef2I3RNyYwSwuZ26GeMlYyfoAklVZkxzopTNCGSVxkV1fs5ughhRwilglYT9L303nkMIbZ9HQE7g2tsWtsmHzrowUbcQ9y6DTaJqy12-xHtsHY2etfhvXdNAvFXG7cp6S14HFr7MXS1b-MBD2OA4xZwiB5CwK2NYMNYMrWOzl-iM1N3Aa7-7BSt75dvi8ds9frwtLhbZZoJyTNmBG3KStQFJ2ZTgpSUgNRcGsZrEECKhogN0zqnssiZrqqcm6YkZSNBUqrzKbo5zk0Xfw7pY7Vzg7dppWKSijyXvCwSdXuktHcheDBq79O__qAoUaPEKkmsfiVO7PzIfrUdHP4H1cv6-djxA1WIf-0</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Kim, Seokchan</creator><creator>Lee, Hyung‐Chun</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4171-3325</orcidid><orcidid>https://orcid.org/0000-0002-3168-3858</orcidid></search><sort><creationdate>202211</creationdate><title>Error estimate of a finite element method for an optimal control problem with corner singularity using the stress intensity factor</title><author>Kim, Seokchan ; Lee, Hyung‐Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2574-2f51b895a640fd8e7710e7c47f24ae5e06b05d2cc317632c9934fb808b7e711c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>corner singularity</topic><topic>Domains</topic><topic>Error analysis</topic><topic>Finite element method</topic><topic>Numerical analysis</topic><topic>Optimal control</topic><topic>optimal control problem</topic><topic>Optimization</topic><topic>Poisson equation</topic><topic>Polygons</topic><topic>Singularities</topic><topic>stress intensity factor</topic><topic>Stress intensity factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seokchan</creatorcontrib><creatorcontrib>Lee, Hyung‐Chun</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seokchan</au><au>Lee, Hyung‐Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Error estimate of a finite element method for an optimal control problem with corner singularity using the stress intensity factor</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2022-11</date><risdate>2022</risdate><volume>38</volume><issue>6</issue><spage>1578</spage><epage>1594</epage><pages>1578-1594</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>We consider an optimal control problem for the Poisson equation on a non‐convex polygonal domain with the corner singularity. Previously, we proposed a novel algorithm for the accurate numerical solution for the Poisson equation on a polygonal domain with the domain singularity. Then, we investigated the error estimate and its efficient procedure for the numerical algorithm. In this article, we propose an efficient algorithm and perform an error estimate for a distributed optimal control problem of the Poisson equation. The solutions of the optimality system with such singularity have singular decompositions: regular part plus singular part for each state variable and adjoint variable. The coefficient of the singular function is usually called stress intensity factor and can be computed by the extraction formula. We introduced a modified optimality system which has “zero” stress intensity factors using this stress intensity factor, from whose solutions we can compute very accurate solution of the original optimality system simply by adding a singular part. We give a precise error analysis and provide numerical results which justify the results therein.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/num.22824</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0003-4171-3325</orcidid><orcidid>https://orcid.org/0000-0002-3168-3858</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2022-11, Vol.38 (6), p.1578-1594 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_journals_2715337486 |
source | Wiley Online Library All Journals |
subjects | Algorithms corner singularity Domains Error analysis Finite element method Numerical analysis Optimal control optimal control problem Optimization Poisson equation Polygons Singularities stress intensity factor Stress intensity factors |
title | Error estimate of a finite element method for an optimal control problem with corner singularity using the stress intensity factor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A42%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Error%20estimate%20of%20a%20finite%20element%20method%20for%20an%20optimal%20control%20problem%20with%20corner%20singularity%20using%20the%20stress%20intensity%20factor&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Kim,%20Seokchan&rft.date=2022-11&rft.volume=38&rft.issue=6&rft.spage=1578&rft.epage=1594&rft.pages=1578-1594&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22824&rft_dat=%3Cproquest_cross%3E2715337486%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2715337486&rft_id=info:pmid/&rfr_iscdi=true |