Query relaxation of fuzzy spatiotemporal RDF data

RDF is a framework used to describe web resources, which is a recommended standard by W3C and has been applied to many fields. Moreover, with the rapid development of spatiotemporal data and its applications, its query has received extensive attention. At the same time, fuzzy information cannot be i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022-09, Vol.52 (11), p.13195-13213
Hauptverfasser: Bai, Luyi, Di, Xiaofeng, Zhu, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13213
container_issue 11
container_start_page 13195
container_title Applied intelligence (Dordrecht, Netherlands)
container_volume 52
creator Bai, Luyi
Di, Xiaofeng
Zhu, Lin
description RDF is a framework used to describe web resources, which is a recommended standard by W3C and has been applied to many fields. Moreover, with the rapid development of spatiotemporal data and its applications, its query has received extensive attention. At the same time, fuzzy information cannot be ignored in many practical spatiotemporal applications. The research on fuzzy spatiotemporal data query has become one of the most important topics. In fact, when the number of query results is small or even empty, especially in the process of querying fuzzy spatiotemporal data, query relaxation is necessary. In addition, there are still few researches on query relaxation of fuzzy spatiotemporal data. In order to solve this problem, the paper proposes a fuzzy spatiotemporal RDF attributes relaxation method and a simple triple relaxation method to obtain a broader query relaxation results. Then it returns the top- k results with the highest similarity to the initial query. Finally, two groups of experiments are carried out to show the performance advantages of our approach. The experimental results show that the proposed two relaxation methods could meet the requirements of general and high result expectations.
doi_str_mv 10.1007/s10489-021-03006-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2714982570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714982570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-cb18c3d11256897354bce10fe3a8d47bb89a5e1f2f2610be7c62f0dff5a1c02c3</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoWKd_wKeCz9F7k7ZpHmW6KQxEUfAtpGkiG11bk5bZ_Xo7K_jm04XD-c6Fj5BLhGsEEDcBIcklBYYUOEBGd0ckwlRwKhIpjkkEkiU0y-T7KTkLYQMAnANGBJ9764fY20p_6W7d1HHjYtfv90Mc2kPQ2W3beF3FL3eLuNSdPicnTlfBXvzeGXlb3L_OH-jqafk4v11RwwR01BSYG14isjTLpeBpUhiL4CzXeZmIosilTi065liGUFhhMuagdC7VaIAZPiNX027rm8_ehk5tmt7X40vFBCYyZ6mAscWmlvFNCN461fr1VvtBIaiDGjWpUaMa9aNG7UaIT1AYy_WH9X_T_1DfUa1mwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714982570</pqid></control><display><type>article</type><title>Query relaxation of fuzzy spatiotemporal RDF data</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bai, Luyi ; Di, Xiaofeng ; Zhu, Lin</creator><creatorcontrib>Bai, Luyi ; Di, Xiaofeng ; Zhu, Lin</creatorcontrib><description>RDF is a framework used to describe web resources, which is a recommended standard by W3C and has been applied to many fields. Moreover, with the rapid development of spatiotemporal data and its applications, its query has received extensive attention. At the same time, fuzzy information cannot be ignored in many practical spatiotemporal applications. The research on fuzzy spatiotemporal data query has become one of the most important topics. In fact, when the number of query results is small or even empty, especially in the process of querying fuzzy spatiotemporal data, query relaxation is necessary. In addition, there are still few researches on query relaxation of fuzzy spatiotemporal data. In order to solve this problem, the paper proposes a fuzzy spatiotemporal RDF attributes relaxation method and a simple triple relaxation method to obtain a broader query relaxation results. Then it returns the top- k results with the highest similarity to the initial query. Finally, two groups of experiments are carried out to show the performance advantages of our approach. The experimental results show that the proposed two relaxation methods could meet the requirements of general and high result expectations.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-021-03006-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Data models ; Internet resources ; Machines ; Manufacturing ; Mechanical Engineering ; Methods ; Processes ; Queries ; Relaxation method (mathematics) ; Resource Description Framework-RDF ; Semantics ; Spatiotemporal data</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2022-09, Vol.52 (11), p.13195-13213</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-cb18c3d11256897354bce10fe3a8d47bb89a5e1f2f2610be7c62f0dff5a1c02c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-021-03006-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-021-03006-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Bai, Luyi</creatorcontrib><creatorcontrib>Di, Xiaofeng</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><title>Query relaxation of fuzzy spatiotemporal RDF data</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>RDF is a framework used to describe web resources, which is a recommended standard by W3C and has been applied to many fields. Moreover, with the rapid development of spatiotemporal data and its applications, its query has received extensive attention. At the same time, fuzzy information cannot be ignored in many practical spatiotemporal applications. The research on fuzzy spatiotemporal data query has become one of the most important topics. In fact, when the number of query results is small or even empty, especially in the process of querying fuzzy spatiotemporal data, query relaxation is necessary. In addition, there are still few researches on query relaxation of fuzzy spatiotemporal data. In order to solve this problem, the paper proposes a fuzzy spatiotemporal RDF attributes relaxation method and a simple triple relaxation method to obtain a broader query relaxation results. Then it returns the top- k results with the highest similarity to the initial query. Finally, two groups of experiments are carried out to show the performance advantages of our approach. The experimental results show that the proposed two relaxation methods could meet the requirements of general and high result expectations.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Data models</subject><subject>Internet resources</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Methods</subject><subject>Processes</subject><subject>Queries</subject><subject>Relaxation method (mathematics)</subject><subject>Resource Description Framework-RDF</subject><subject>Semantics</subject><subject>Spatiotemporal data</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kFFLwzAUhYMoWKd_wKeCz9F7k7ZpHmW6KQxEUfAtpGkiG11bk5bZ_Xo7K_jm04XD-c6Fj5BLhGsEEDcBIcklBYYUOEBGd0ckwlRwKhIpjkkEkiU0y-T7KTkLYQMAnANGBJ9764fY20p_6W7d1HHjYtfv90Mc2kPQ2W3beF3FL3eLuNSdPicnTlfBXvzeGXlb3L_OH-jqafk4v11RwwR01BSYG14isjTLpeBpUhiL4CzXeZmIosilTi065liGUFhhMuagdC7VaIAZPiNX027rm8_ehk5tmt7X40vFBCYyZ6mAscWmlvFNCN461fr1VvtBIaiDGjWpUaMa9aNG7UaIT1AYy_WH9X_T_1DfUa1mwA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Bai, Luyi</creator><creator>Di, Xiaofeng</creator><creator>Zhu, Lin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220901</creationdate><title>Query relaxation of fuzzy spatiotemporal RDF data</title><author>Bai, Luyi ; Di, Xiaofeng ; Zhu, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-cb18c3d11256897354bce10fe3a8d47bb89a5e1f2f2610be7c62f0dff5a1c02c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Data models</topic><topic>Internet resources</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Methods</topic><topic>Processes</topic><topic>Queries</topic><topic>Relaxation method (mathematics)</topic><topic>Resource Description Framework-RDF</topic><topic>Semantics</topic><topic>Spatiotemporal data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bai, Luyi</creatorcontrib><creatorcontrib>Di, Xiaofeng</creatorcontrib><creatorcontrib>Zhu, Lin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bai, Luyi</au><au>Di, Xiaofeng</au><au>Zhu, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Query relaxation of fuzzy spatiotemporal RDF data</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>52</volume><issue>11</issue><spage>13195</spage><epage>13213</epage><pages>13195-13213</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>RDF is a framework used to describe web resources, which is a recommended standard by W3C and has been applied to many fields. Moreover, with the rapid development of spatiotemporal data and its applications, its query has received extensive attention. At the same time, fuzzy information cannot be ignored in many practical spatiotemporal applications. The research on fuzzy spatiotemporal data query has become one of the most important topics. In fact, when the number of query results is small or even empty, especially in the process of querying fuzzy spatiotemporal data, query relaxation is necessary. In addition, there are still few researches on query relaxation of fuzzy spatiotemporal data. In order to solve this problem, the paper proposes a fuzzy spatiotemporal RDF attributes relaxation method and a simple triple relaxation method to obtain a broader query relaxation results. Then it returns the top- k results with the highest similarity to the initial query. Finally, two groups of experiments are carried out to show the performance advantages of our approach. The experimental results show that the proposed two relaxation methods could meet the requirements of general and high result expectations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-021-03006-w</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-669X
ispartof Applied intelligence (Dordrecht, Netherlands), 2022-09, Vol.52 (11), p.13195-13213
issn 0924-669X
1573-7497
language eng
recordid cdi_proquest_journals_2714982570
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial Intelligence
Computer Science
Data models
Internet resources
Machines
Manufacturing
Mechanical Engineering
Methods
Processes
Queries
Relaxation method (mathematics)
Resource Description Framework-RDF
Semantics
Spatiotemporal data
title Query relaxation of fuzzy spatiotemporal RDF data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Query%20relaxation%20of%20fuzzy%20spatiotemporal%20RDF%20data&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Bai,%20Luyi&rft.date=2022-09-01&rft.volume=52&rft.issue=11&rft.spage=13195&rft.epage=13213&rft.pages=13195-13213&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-021-03006-w&rft_dat=%3Cproquest_cross%3E2714982570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714982570&rft_id=info:pmid/&rfr_iscdi=true