Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China

Soil organic carbon (SOC) pool within different agroforestry systems is less documented. This study therefore investigated the relationships between soil parameters, concentrations of SOC pools, and soil erodibility under four agroforestry systems (Chinese ash ( Fraxinus chinensis Roxb ) forestland...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agroforestry systems 2022-10, Vol.96 (7), p.997-1008
Hauptverfasser: Pan, Jiachen, Liu, Chao, Li, Hongli, Wu, Qicong, Dong, Zhi, Dou, Xiaohui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1008
container_issue 7
container_start_page 997
container_title Agroforestry systems
container_volume 96
creator Pan, Jiachen
Liu, Chao
Li, Hongli
Wu, Qicong
Dong, Zhi
Dou, Xiaohui
description Soil organic carbon (SOC) pool within different agroforestry systems is less documented. This study therefore investigated the relationships between soil parameters, concentrations of SOC pools, and soil erodibility under four agroforestry systems (Chinese ash ( Fraxinus chinensis Roxb ) forestland (CK), Chinese ash forestland and soybean ( Glycine max (Linn.) Merr. ) farmland (AS), Chinese ash forestland and peanut ( Arachis hypogaea Linn. ) farmland (AP), and Chinese ash forestland and chrysanthemum ( Arachis hypogaea Linn. ) farmland (AC)) in Yellow River Flood Plain in China. Among the compared agroforestry systems, AS had the highest easily oxidizable carbon (1.69 g kg −1 ), particulate organic carbon (1.60 g kg −1 ), dissolved organic carbon (30.23 g kg −1 ) and microbial biomass carbon (17.71 g kg −1 ), AC had the lowest (1.09 g kg −1 , 0.82 g kg −1 , 22.29 g kg −1 , and 12.34 g kg −1 , respectively). The non-easily oxidizable carbon (NOC) and mineral-associated organic carbon of AS (respectively, 5.71 g kg −1 and 5.96 g kg −1 ) were the greatest, whereas both were far lower under AC (respectively, 2.40 g kg −1 and 2.48 g kg −1 ). The ranking for soil carbon fractions concentrations was AS > CK > AP > AC. Structural equation modeling analysis revealed that soil capillary porosity and the active SOC pool (C a ) had positive effects on soil erodibility factor (K) (standardized coefficient = 0.27 and 0.33, respectively), while pH, the ratio of carbon to nitrogen (C/N), and the resistant SOC pool (C r ) each negatively affected K (standardized coefficient = − 0.46, − 0.33 and − 0.59, respectively). Further, the redundancy analysis results supported a decisive role for soil parameters and carbon fractions in determining soil erodibility. The result of this study implies that agroforestry can strengthen soil erodibility resistance. Altogether, these findings suggest the effects of the resistant SOC pool warrants explicit consideration when studying the dynamics of soil erosion resistance.
doi_str_mv 10.1007/s10457-022-00757-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2714981011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714981011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fc51d9515e91d1950335228d0b6f26acac7c04dd8057d307131bd2adfcab16b23</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAq6sz2e-jFKtCQfHj4Clkk2ybsk1qsq0U_7zRVbx5mszL885kXkJOES4QoLwMCFleJsBYEtv4yvbICPOSJXVRwT4ZARZRTIvikByFsASAuiirEfl4cqZLvA4m9ML21Pm5sEZSKXzjLDWrtXdbHWiIGNXeBRPVX1xqurFKeyrm3rUuyr3fUWNpv9D0VXede6ePZhuBaeecog-dMPacupZOFsaKY3LQii7ok586Ji_T6-fJbTK7v7mbXM0SmWLdJ63MUdU55rpGhXUOaZozViloipYVQgpZSsiUqiAvVQolptgoJlQrRYNFw9IxORvmxlveNvGTfOk23saVnJWY1RUCYqTYQMl4ZfC65WtvVsLvOAL_CpkPIfMYMv8OmWfRlA6mEGE71_5v9D-uT6vngTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714981011</pqid></control><display><type>article</type><title>Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China</title><source>Springer Online Journals</source><creator>Pan, Jiachen ; Liu, Chao ; Li, Hongli ; Wu, Qicong ; Dong, Zhi ; Dou, Xiaohui</creator><creatorcontrib>Pan, Jiachen ; Liu, Chao ; Li, Hongli ; Wu, Qicong ; Dong, Zhi ; Dou, Xiaohui</creatorcontrib><description>Soil organic carbon (SOC) pool within different agroforestry systems is less documented. This study therefore investigated the relationships between soil parameters, concentrations of SOC pools, and soil erodibility under four agroforestry systems (Chinese ash ( Fraxinus chinensis Roxb ) forestland (CK), Chinese ash forestland and soybean ( Glycine max (Linn.) Merr. ) farmland (AS), Chinese ash forestland and peanut ( Arachis hypogaea Linn. ) farmland (AP), and Chinese ash forestland and chrysanthemum ( Arachis hypogaea Linn. ) farmland (AC)) in Yellow River Flood Plain in China. Among the compared agroforestry systems, AS had the highest easily oxidizable carbon (1.69 g kg −1 ), particulate organic carbon (1.60 g kg −1 ), dissolved organic carbon (30.23 g kg −1 ) and microbial biomass carbon (17.71 g kg −1 ), AC had the lowest (1.09 g kg −1 , 0.82 g kg −1 , 22.29 g kg −1 , and 12.34 g kg −1 , respectively). The non-easily oxidizable carbon (NOC) and mineral-associated organic carbon of AS (respectively, 5.71 g kg −1 and 5.96 g kg −1 ) were the greatest, whereas both were far lower under AC (respectively, 2.40 g kg −1 and 2.48 g kg −1 ). The ranking for soil carbon fractions concentrations was AS &gt; CK &gt; AP &gt; AC. Structural equation modeling analysis revealed that soil capillary porosity and the active SOC pool (C a ) had positive effects on soil erodibility factor (K) (standardized coefficient = 0.27 and 0.33, respectively), while pH, the ratio of carbon to nitrogen (C/N), and the resistant SOC pool (C r ) each negatively affected K (standardized coefficient = − 0.46, − 0.33 and − 0.59, respectively). Further, the redundancy analysis results supported a decisive role for soil parameters and carbon fractions in determining soil erodibility. The result of this study implies that agroforestry can strengthen soil erodibility resistance. Altogether, these findings suggest the effects of the resistant SOC pool warrants explicit consideration when studying the dynamics of soil erosion resistance.</description><identifier>ISSN: 0167-4366</identifier><identifier>EISSN: 1572-9680</identifier><identifier>DOI: 10.1007/s10457-022-00757-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agricultural land ; Agriculture ; Agroforestry ; Arachis hypogaea ; Biomedical and Life Sciences ; Carbon ; Dissolved organic carbon ; Erosion resistance ; Floodplains ; Forestry ; Fraxinus chinensis ; Life Sciences ; Microorganisms ; Multivariate statistical analysis ; Organic soils ; Parameters ; Particulate organic carbon ; Porosity ; Redundancy ; Rivers ; Soil dynamics ; Soil erosion ; Soil improvement ; Soil porosity ; Soil resistance ; Soybeans ; Structural equation modeling</subject><ispartof>Agroforestry systems, 2022-10, Vol.96 (7), p.997-1008</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fc51d9515e91d1950335228d0b6f26acac7c04dd8057d307131bd2adfcab16b23</citedby><cites>FETCH-LOGICAL-c319t-fc51d9515e91d1950335228d0b6f26acac7c04dd8057d307131bd2adfcab16b23</cites><orcidid>0000-0003-4241-4837 ; 0000-0002-3176-9440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10457-022-00757-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10457-022-00757-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pan, Jiachen</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Wu, Qicong</creatorcontrib><creatorcontrib>Dong, Zhi</creatorcontrib><creatorcontrib>Dou, Xiaohui</creatorcontrib><title>Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China</title><title>Agroforestry systems</title><addtitle>Agroforest Syst</addtitle><description>Soil organic carbon (SOC) pool within different agroforestry systems is less documented. This study therefore investigated the relationships between soil parameters, concentrations of SOC pools, and soil erodibility under four agroforestry systems (Chinese ash ( Fraxinus chinensis Roxb ) forestland (CK), Chinese ash forestland and soybean ( Glycine max (Linn.) Merr. ) farmland (AS), Chinese ash forestland and peanut ( Arachis hypogaea Linn. ) farmland (AP), and Chinese ash forestland and chrysanthemum ( Arachis hypogaea Linn. ) farmland (AC)) in Yellow River Flood Plain in China. Among the compared agroforestry systems, AS had the highest easily oxidizable carbon (1.69 g kg −1 ), particulate organic carbon (1.60 g kg −1 ), dissolved organic carbon (30.23 g kg −1 ) and microbial biomass carbon (17.71 g kg −1 ), AC had the lowest (1.09 g kg −1 , 0.82 g kg −1 , 22.29 g kg −1 , and 12.34 g kg −1 , respectively). The non-easily oxidizable carbon (NOC) and mineral-associated organic carbon of AS (respectively, 5.71 g kg −1 and 5.96 g kg −1 ) were the greatest, whereas both were far lower under AC (respectively, 2.40 g kg −1 and 2.48 g kg −1 ). The ranking for soil carbon fractions concentrations was AS &gt; CK &gt; AP &gt; AC. Structural equation modeling analysis revealed that soil capillary porosity and the active SOC pool (C a ) had positive effects on soil erodibility factor (K) (standardized coefficient = 0.27 and 0.33, respectively), while pH, the ratio of carbon to nitrogen (C/N), and the resistant SOC pool (C r ) each negatively affected K (standardized coefficient = − 0.46, − 0.33 and − 0.59, respectively). Further, the redundancy analysis results supported a decisive role for soil parameters and carbon fractions in determining soil erodibility. The result of this study implies that agroforestry can strengthen soil erodibility resistance. Altogether, these findings suggest the effects of the resistant SOC pool warrants explicit consideration when studying the dynamics of soil erosion resistance.</description><subject>Agricultural land</subject><subject>Agriculture</subject><subject>Agroforestry</subject><subject>Arachis hypogaea</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Dissolved organic carbon</subject><subject>Erosion resistance</subject><subject>Floodplains</subject><subject>Forestry</subject><subject>Fraxinus chinensis</subject><subject>Life Sciences</subject><subject>Microorganisms</subject><subject>Multivariate statistical analysis</subject><subject>Organic soils</subject><subject>Parameters</subject><subject>Particulate organic carbon</subject><subject>Porosity</subject><subject>Redundancy</subject><subject>Rivers</subject><subject>Soil dynamics</subject><subject>Soil erosion</subject><subject>Soil improvement</subject><subject>Soil porosity</subject><subject>Soil resistance</subject><subject>Soybeans</subject><subject>Structural equation modeling</subject><issn>0167-4366</issn><issn>1572-9680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAq6sz2e-jFKtCQfHj4Clkk2ybsk1qsq0U_7zRVbx5mszL885kXkJOES4QoLwMCFleJsBYEtv4yvbICPOSJXVRwT4ZARZRTIvikByFsASAuiirEfl4cqZLvA4m9ML21Pm5sEZSKXzjLDWrtXdbHWiIGNXeBRPVX1xqurFKeyrm3rUuyr3fUWNpv9D0VXede6ePZhuBaeecog-dMPacupZOFsaKY3LQii7ok586Ji_T6-fJbTK7v7mbXM0SmWLdJ63MUdU55rpGhXUOaZozViloipYVQgpZSsiUqiAvVQolptgoJlQrRYNFw9IxORvmxlveNvGTfOk23saVnJWY1RUCYqTYQMl4ZfC65WtvVsLvOAL_CpkPIfMYMv8OmWfRlA6mEGE71_5v9D-uT6vngTI</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Pan, Jiachen</creator><creator>Liu, Chao</creator><creator>Li, Hongli</creator><creator>Wu, Qicong</creator><creator>Dong, Zhi</creator><creator>Dou, Xiaohui</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4241-4837</orcidid><orcidid>https://orcid.org/0000-0002-3176-9440</orcidid></search><sort><creationdate>20221001</creationdate><title>Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China</title><author>Pan, Jiachen ; Liu, Chao ; Li, Hongli ; Wu, Qicong ; Dong, Zhi ; Dou, Xiaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fc51d9515e91d1950335228d0b6f26acac7c04dd8057d307131bd2adfcab16b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural land</topic><topic>Agriculture</topic><topic>Agroforestry</topic><topic>Arachis hypogaea</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Dissolved organic carbon</topic><topic>Erosion resistance</topic><topic>Floodplains</topic><topic>Forestry</topic><topic>Fraxinus chinensis</topic><topic>Life Sciences</topic><topic>Microorganisms</topic><topic>Multivariate statistical analysis</topic><topic>Organic soils</topic><topic>Parameters</topic><topic>Particulate organic carbon</topic><topic>Porosity</topic><topic>Redundancy</topic><topic>Rivers</topic><topic>Soil dynamics</topic><topic>Soil erosion</topic><topic>Soil improvement</topic><topic>Soil porosity</topic><topic>Soil resistance</topic><topic>Soybeans</topic><topic>Structural equation modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Jiachen</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Wu, Qicong</creatorcontrib><creatorcontrib>Dong, Zhi</creatorcontrib><creatorcontrib>Dou, Xiaohui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>ProQuest Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Agroforestry systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Jiachen</au><au>Liu, Chao</au><au>Li, Hongli</au><au>Wu, Qicong</au><au>Dong, Zhi</au><au>Dou, Xiaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China</atitle><jtitle>Agroforestry systems</jtitle><stitle>Agroforest Syst</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>96</volume><issue>7</issue><spage>997</spage><epage>1008</epage><pages>997-1008</pages><issn>0167-4366</issn><eissn>1572-9680</eissn><abstract>Soil organic carbon (SOC) pool within different agroforestry systems is less documented. This study therefore investigated the relationships between soil parameters, concentrations of SOC pools, and soil erodibility under four agroforestry systems (Chinese ash ( Fraxinus chinensis Roxb ) forestland (CK), Chinese ash forestland and soybean ( Glycine max (Linn.) Merr. ) farmland (AS), Chinese ash forestland and peanut ( Arachis hypogaea Linn. ) farmland (AP), and Chinese ash forestland and chrysanthemum ( Arachis hypogaea Linn. ) farmland (AC)) in Yellow River Flood Plain in China. Among the compared agroforestry systems, AS had the highest easily oxidizable carbon (1.69 g kg −1 ), particulate organic carbon (1.60 g kg −1 ), dissolved organic carbon (30.23 g kg −1 ) and microbial biomass carbon (17.71 g kg −1 ), AC had the lowest (1.09 g kg −1 , 0.82 g kg −1 , 22.29 g kg −1 , and 12.34 g kg −1 , respectively). The non-easily oxidizable carbon (NOC) and mineral-associated organic carbon of AS (respectively, 5.71 g kg −1 and 5.96 g kg −1 ) were the greatest, whereas both were far lower under AC (respectively, 2.40 g kg −1 and 2.48 g kg −1 ). The ranking for soil carbon fractions concentrations was AS &gt; CK &gt; AP &gt; AC. Structural equation modeling analysis revealed that soil capillary porosity and the active SOC pool (C a ) had positive effects on soil erodibility factor (K) (standardized coefficient = 0.27 and 0.33, respectively), while pH, the ratio of carbon to nitrogen (C/N), and the resistant SOC pool (C r ) each negatively affected K (standardized coefficient = − 0.46, − 0.33 and − 0.59, respectively). Further, the redundancy analysis results supported a decisive role for soil parameters and carbon fractions in determining soil erodibility. The result of this study implies that agroforestry can strengthen soil erodibility resistance. Altogether, these findings suggest the effects of the resistant SOC pool warrants explicit consideration when studying the dynamics of soil erosion resistance.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10457-022-00757-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4241-4837</orcidid><orcidid>https://orcid.org/0000-0002-3176-9440</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-4366
ispartof Agroforestry systems, 2022-10, Vol.96 (7), p.997-1008
issn 0167-4366
1572-9680
language eng
recordid cdi_proquest_journals_2714981011
source Springer Online Journals
subjects Agricultural land
Agriculture
Agroforestry
Arachis hypogaea
Biomedical and Life Sciences
Carbon
Dissolved organic carbon
Erosion resistance
Floodplains
Forestry
Fraxinus chinensis
Life Sciences
Microorganisms
Multivariate statistical analysis
Organic soils
Parameters
Particulate organic carbon
Porosity
Redundancy
Rivers
Soil dynamics
Soil erosion
Soil improvement
Soil porosity
Soil resistance
Soybeans
Structural equation modeling
title Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil-resistant%20organic%20carbon%20improves%20soil%20erosion%20resistance%20under%20agroforestry%20in%20the%20Yellow%20River%20Flood%20Plain,%20of%20China&rft.jtitle=Agroforestry%20systems&rft.au=Pan,%20Jiachen&rft.date=2022-10-01&rft.volume=96&rft.issue=7&rft.spage=997&rft.epage=1008&rft.pages=997-1008&rft.issn=0167-4366&rft.eissn=1572-9680&rft_id=info:doi/10.1007/s10457-022-00757-4&rft_dat=%3Cproquest_cross%3E2714981011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714981011&rft_id=info:pmid/&rfr_iscdi=true