Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China
Soil organic carbon (SOC) pool within different agroforestry systems is less documented. This study therefore investigated the relationships between soil parameters, concentrations of SOC pools, and soil erodibility under four agroforestry systems (Chinese ash ( Fraxinus chinensis Roxb ) forestland...
Gespeichert in:
Veröffentlicht in: | Agroforestry systems 2022-10, Vol.96 (7), p.997-1008 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1008 |
---|---|
container_issue | 7 |
container_start_page | 997 |
container_title | Agroforestry systems |
container_volume | 96 |
creator | Pan, Jiachen Liu, Chao Li, Hongli Wu, Qicong Dong, Zhi Dou, Xiaohui |
description | Soil organic carbon (SOC) pool within different agroforestry systems is less documented. This study therefore investigated the relationships between soil parameters, concentrations of SOC pools, and soil erodibility under four agroforestry systems (Chinese ash (
Fraxinus chinensis Roxb
) forestland (CK), Chinese ash forestland and soybean (
Glycine max (Linn.) Merr.
) farmland (AS), Chinese ash forestland and peanut (
Arachis hypogaea Linn.
) farmland (AP), and Chinese ash forestland and chrysanthemum (
Arachis hypogaea Linn.
) farmland (AC)) in Yellow River Flood Plain in China. Among the compared agroforestry systems, AS had the highest easily oxidizable carbon (1.69 g kg
−1
), particulate organic carbon (1.60 g kg
−1
), dissolved organic carbon (30.23 g kg
−1
) and microbial biomass carbon (17.71 g kg
−1
), AC had the lowest (1.09 g kg
−1
, 0.82 g kg
−1
, 22.29 g kg
−1
, and 12.34 g kg
−1
, respectively). The non-easily oxidizable carbon (NOC) and mineral-associated organic carbon of AS (respectively, 5.71 g kg
−1
and 5.96 g kg
−1
) were the greatest, whereas both were far lower under AC (respectively, 2.40 g kg
−1
and 2.48 g kg
−1
). The ranking for soil carbon fractions concentrations was AS > CK > AP > AC. Structural equation modeling analysis revealed that soil capillary porosity and the active SOC pool (C
a
) had positive effects on soil erodibility factor (K) (standardized coefficient = 0.27 and 0.33, respectively), while pH, the ratio of carbon to nitrogen (C/N), and the resistant SOC pool (C
r
) each negatively affected K (standardized coefficient = − 0.46, − 0.33 and − 0.59, respectively). Further, the redundancy analysis results supported a decisive role for soil parameters and carbon fractions in determining soil erodibility. The result of this study implies that agroforestry can strengthen soil erodibility resistance. Altogether, these findings suggest the effects of the resistant SOC pool warrants explicit consideration when studying the dynamics of soil erosion resistance. |
doi_str_mv | 10.1007/s10457-022-00757-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2714981011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714981011</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-fc51d9515e91d1950335228d0b6f26acac7c04dd8057d307131bd2adfcab16b23</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAq6sz2e-jFKtCQfHj4Clkk2ybsk1qsq0U_7zRVbx5mszL885kXkJOES4QoLwMCFleJsBYEtv4yvbICPOSJXVRwT4ZARZRTIvikByFsASAuiirEfl4cqZLvA4m9ML21Pm5sEZSKXzjLDWrtXdbHWiIGNXeBRPVX1xqurFKeyrm3rUuyr3fUWNpv9D0VXede6ePZhuBaeecog-dMPacupZOFsaKY3LQii7ok586Ji_T6-fJbTK7v7mbXM0SmWLdJ63MUdU55rpGhXUOaZozViloipYVQgpZSsiUqiAvVQolptgoJlQrRYNFw9IxORvmxlveNvGTfOk23saVnJWY1RUCYqTYQMl4ZfC65WtvVsLvOAL_CpkPIfMYMv8OmWfRlA6mEGE71_5v9D-uT6vngTI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714981011</pqid></control><display><type>article</type><title>Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China</title><source>Springer Online Journals</source><creator>Pan, Jiachen ; Liu, Chao ; Li, Hongli ; Wu, Qicong ; Dong, Zhi ; Dou, Xiaohui</creator><creatorcontrib>Pan, Jiachen ; Liu, Chao ; Li, Hongli ; Wu, Qicong ; Dong, Zhi ; Dou, Xiaohui</creatorcontrib><description>Soil organic carbon (SOC) pool within different agroforestry systems is less documented. This study therefore investigated the relationships between soil parameters, concentrations of SOC pools, and soil erodibility under four agroforestry systems (Chinese ash (
Fraxinus chinensis Roxb
) forestland (CK), Chinese ash forestland and soybean (
Glycine max (Linn.) Merr.
) farmland (AS), Chinese ash forestland and peanut (
Arachis hypogaea Linn.
) farmland (AP), and Chinese ash forestland and chrysanthemum (
Arachis hypogaea Linn.
) farmland (AC)) in Yellow River Flood Plain in China. Among the compared agroforestry systems, AS had the highest easily oxidizable carbon (1.69 g kg
−1
), particulate organic carbon (1.60 g kg
−1
), dissolved organic carbon (30.23 g kg
−1
) and microbial biomass carbon (17.71 g kg
−1
), AC had the lowest (1.09 g kg
−1
, 0.82 g kg
−1
, 22.29 g kg
−1
, and 12.34 g kg
−1
, respectively). The non-easily oxidizable carbon (NOC) and mineral-associated organic carbon of AS (respectively, 5.71 g kg
−1
and 5.96 g kg
−1
) were the greatest, whereas both were far lower under AC (respectively, 2.40 g kg
−1
and 2.48 g kg
−1
). The ranking for soil carbon fractions concentrations was AS > CK > AP > AC. Structural equation modeling analysis revealed that soil capillary porosity and the active SOC pool (C
a
) had positive effects on soil erodibility factor (K) (standardized coefficient = 0.27 and 0.33, respectively), while pH, the ratio of carbon to nitrogen (C/N), and the resistant SOC pool (C
r
) each negatively affected K (standardized coefficient = − 0.46, − 0.33 and − 0.59, respectively). Further, the redundancy analysis results supported a decisive role for soil parameters and carbon fractions in determining soil erodibility. The result of this study implies that agroforestry can strengthen soil erodibility resistance. Altogether, these findings suggest the effects of the resistant SOC pool warrants explicit consideration when studying the dynamics of soil erosion resistance.</description><identifier>ISSN: 0167-4366</identifier><identifier>EISSN: 1572-9680</identifier><identifier>DOI: 10.1007/s10457-022-00757-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agricultural land ; Agriculture ; Agroforestry ; Arachis hypogaea ; Biomedical and Life Sciences ; Carbon ; Dissolved organic carbon ; Erosion resistance ; Floodplains ; Forestry ; Fraxinus chinensis ; Life Sciences ; Microorganisms ; Multivariate statistical analysis ; Organic soils ; Parameters ; Particulate organic carbon ; Porosity ; Redundancy ; Rivers ; Soil dynamics ; Soil erosion ; Soil improvement ; Soil porosity ; Soil resistance ; Soybeans ; Structural equation modeling</subject><ispartof>Agroforestry systems, 2022-10, Vol.96 (7), p.997-1008</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-fc51d9515e91d1950335228d0b6f26acac7c04dd8057d307131bd2adfcab16b23</citedby><cites>FETCH-LOGICAL-c319t-fc51d9515e91d1950335228d0b6f26acac7c04dd8057d307131bd2adfcab16b23</cites><orcidid>0000-0003-4241-4837 ; 0000-0002-3176-9440</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10457-022-00757-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10457-022-00757-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pan, Jiachen</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Wu, Qicong</creatorcontrib><creatorcontrib>Dong, Zhi</creatorcontrib><creatorcontrib>Dou, Xiaohui</creatorcontrib><title>Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China</title><title>Agroforestry systems</title><addtitle>Agroforest Syst</addtitle><description>Soil organic carbon (SOC) pool within different agroforestry systems is less documented. This study therefore investigated the relationships between soil parameters, concentrations of SOC pools, and soil erodibility under four agroforestry systems (Chinese ash (
Fraxinus chinensis Roxb
) forestland (CK), Chinese ash forestland and soybean (
Glycine max (Linn.) Merr.
) farmland (AS), Chinese ash forestland and peanut (
Arachis hypogaea Linn.
) farmland (AP), and Chinese ash forestland and chrysanthemum (
Arachis hypogaea Linn.
) farmland (AC)) in Yellow River Flood Plain in China. Among the compared agroforestry systems, AS had the highest easily oxidizable carbon (1.69 g kg
−1
), particulate organic carbon (1.60 g kg
−1
), dissolved organic carbon (30.23 g kg
−1
) and microbial biomass carbon (17.71 g kg
−1
), AC had the lowest (1.09 g kg
−1
, 0.82 g kg
−1
, 22.29 g kg
−1
, and 12.34 g kg
−1
, respectively). The non-easily oxidizable carbon (NOC) and mineral-associated organic carbon of AS (respectively, 5.71 g kg
−1
and 5.96 g kg
−1
) were the greatest, whereas both were far lower under AC (respectively, 2.40 g kg
−1
and 2.48 g kg
−1
). The ranking for soil carbon fractions concentrations was AS > CK > AP > AC. Structural equation modeling analysis revealed that soil capillary porosity and the active SOC pool (C
a
) had positive effects on soil erodibility factor (K) (standardized coefficient = 0.27 and 0.33, respectively), while pH, the ratio of carbon to nitrogen (C/N), and the resistant SOC pool (C
r
) each negatively affected K (standardized coefficient = − 0.46, − 0.33 and − 0.59, respectively). Further, the redundancy analysis results supported a decisive role for soil parameters and carbon fractions in determining soil erodibility. The result of this study implies that agroforestry can strengthen soil erodibility resistance. Altogether, these findings suggest the effects of the resistant SOC pool warrants explicit consideration when studying the dynamics of soil erosion resistance.</description><subject>Agricultural land</subject><subject>Agriculture</subject><subject>Agroforestry</subject><subject>Arachis hypogaea</subject><subject>Biomedical and Life Sciences</subject><subject>Carbon</subject><subject>Dissolved organic carbon</subject><subject>Erosion resistance</subject><subject>Floodplains</subject><subject>Forestry</subject><subject>Fraxinus chinensis</subject><subject>Life Sciences</subject><subject>Microorganisms</subject><subject>Multivariate statistical analysis</subject><subject>Organic soils</subject><subject>Parameters</subject><subject>Particulate organic carbon</subject><subject>Porosity</subject><subject>Redundancy</subject><subject>Rivers</subject><subject>Soil dynamics</subject><subject>Soil erosion</subject><subject>Soil improvement</subject><subject>Soil porosity</subject><subject>Soil resistance</subject><subject>Soybeans</subject><subject>Structural equation modeling</subject><issn>0167-4366</issn><issn>1572-9680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_wFPAq6sz2e-jFKtCQfHj4Clkk2ybsk1qsq0U_7zRVbx5mszL885kXkJOES4QoLwMCFleJsBYEtv4yvbICPOSJXVRwT4ZARZRTIvikByFsASAuiirEfl4cqZLvA4m9ML21Pm5sEZSKXzjLDWrtXdbHWiIGNXeBRPVX1xqurFKeyrm3rUuyr3fUWNpv9D0VXede6ePZhuBaeecog-dMPacupZOFsaKY3LQii7ok586Ji_T6-fJbTK7v7mbXM0SmWLdJ63MUdU55rpGhXUOaZozViloipYVQgpZSsiUqiAvVQolptgoJlQrRYNFw9IxORvmxlveNvGTfOk23saVnJWY1RUCYqTYQMl4ZfC65WtvVsLvOAL_CpkPIfMYMv8OmWfRlA6mEGE71_5v9D-uT6vngTI</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Pan, Jiachen</creator><creator>Liu, Chao</creator><creator>Li, Hongli</creator><creator>Wu, Qicong</creator><creator>Dong, Zhi</creator><creator>Dou, Xiaohui</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-4241-4837</orcidid><orcidid>https://orcid.org/0000-0002-3176-9440</orcidid></search><sort><creationdate>20221001</creationdate><title>Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China</title><author>Pan, Jiachen ; Liu, Chao ; Li, Hongli ; Wu, Qicong ; Dong, Zhi ; Dou, Xiaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-fc51d9515e91d1950335228d0b6f26acac7c04dd8057d307131bd2adfcab16b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Agricultural land</topic><topic>Agriculture</topic><topic>Agroforestry</topic><topic>Arachis hypogaea</topic><topic>Biomedical and Life Sciences</topic><topic>Carbon</topic><topic>Dissolved organic carbon</topic><topic>Erosion resistance</topic><topic>Floodplains</topic><topic>Forestry</topic><topic>Fraxinus chinensis</topic><topic>Life Sciences</topic><topic>Microorganisms</topic><topic>Multivariate statistical analysis</topic><topic>Organic soils</topic><topic>Parameters</topic><topic>Particulate organic carbon</topic><topic>Porosity</topic><topic>Redundancy</topic><topic>Rivers</topic><topic>Soil dynamics</topic><topic>Soil erosion</topic><topic>Soil improvement</topic><topic>Soil porosity</topic><topic>Soil resistance</topic><topic>Soybeans</topic><topic>Structural equation modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Jiachen</creatorcontrib><creatorcontrib>Liu, Chao</creatorcontrib><creatorcontrib>Li, Hongli</creatorcontrib><creatorcontrib>Wu, Qicong</creatorcontrib><creatorcontrib>Dong, Zhi</creatorcontrib><creatorcontrib>Dou, Xiaohui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>ProQuest Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Agroforestry systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Jiachen</au><au>Liu, Chao</au><au>Li, Hongli</au><au>Wu, Qicong</au><au>Dong, Zhi</au><au>Dou, Xiaohui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China</atitle><jtitle>Agroforestry systems</jtitle><stitle>Agroforest Syst</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>96</volume><issue>7</issue><spage>997</spage><epage>1008</epage><pages>997-1008</pages><issn>0167-4366</issn><eissn>1572-9680</eissn><abstract>Soil organic carbon (SOC) pool within different agroforestry systems is less documented. This study therefore investigated the relationships between soil parameters, concentrations of SOC pools, and soil erodibility under four agroforestry systems (Chinese ash (
Fraxinus chinensis Roxb
) forestland (CK), Chinese ash forestland and soybean (
Glycine max (Linn.) Merr.
) farmland (AS), Chinese ash forestland and peanut (
Arachis hypogaea Linn.
) farmland (AP), and Chinese ash forestland and chrysanthemum (
Arachis hypogaea Linn.
) farmland (AC)) in Yellow River Flood Plain in China. Among the compared agroforestry systems, AS had the highest easily oxidizable carbon (1.69 g kg
−1
), particulate organic carbon (1.60 g kg
−1
), dissolved organic carbon (30.23 g kg
−1
) and microbial biomass carbon (17.71 g kg
−1
), AC had the lowest (1.09 g kg
−1
, 0.82 g kg
−1
, 22.29 g kg
−1
, and 12.34 g kg
−1
, respectively). The non-easily oxidizable carbon (NOC) and mineral-associated organic carbon of AS (respectively, 5.71 g kg
−1
and 5.96 g kg
−1
) were the greatest, whereas both were far lower under AC (respectively, 2.40 g kg
−1
and 2.48 g kg
−1
). The ranking for soil carbon fractions concentrations was AS > CK > AP > AC. Structural equation modeling analysis revealed that soil capillary porosity and the active SOC pool (C
a
) had positive effects on soil erodibility factor (K) (standardized coefficient = 0.27 and 0.33, respectively), while pH, the ratio of carbon to nitrogen (C/N), and the resistant SOC pool (C
r
) each negatively affected K (standardized coefficient = − 0.46, − 0.33 and − 0.59, respectively). Further, the redundancy analysis results supported a decisive role for soil parameters and carbon fractions in determining soil erodibility. The result of this study implies that agroforestry can strengthen soil erodibility resistance. Altogether, these findings suggest the effects of the resistant SOC pool warrants explicit consideration when studying the dynamics of soil erosion resistance.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10457-022-00757-4</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4241-4837</orcidid><orcidid>https://orcid.org/0000-0002-3176-9440</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4366 |
ispartof | Agroforestry systems, 2022-10, Vol.96 (7), p.997-1008 |
issn | 0167-4366 1572-9680 |
language | eng |
recordid | cdi_proquest_journals_2714981011 |
source | Springer Online Journals |
subjects | Agricultural land Agriculture Agroforestry Arachis hypogaea Biomedical and Life Sciences Carbon Dissolved organic carbon Erosion resistance Floodplains Forestry Fraxinus chinensis Life Sciences Microorganisms Multivariate statistical analysis Organic soils Parameters Particulate organic carbon Porosity Redundancy Rivers Soil dynamics Soil erosion Soil improvement Soil porosity Soil resistance Soybeans Structural equation modeling |
title | Soil-resistant organic carbon improves soil erosion resistance under agroforestry in the Yellow River Flood Plain, of China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soil-resistant%20organic%20carbon%20improves%20soil%20erosion%20resistance%20under%20agroforestry%20in%20the%20Yellow%20River%20Flood%20Plain,%20of%20China&rft.jtitle=Agroforestry%20systems&rft.au=Pan,%20Jiachen&rft.date=2022-10-01&rft.volume=96&rft.issue=7&rft.spage=997&rft.epage=1008&rft.pages=997-1008&rft.issn=0167-4366&rft.eissn=1572-9680&rft_id=info:doi/10.1007/s10457-022-00757-4&rft_dat=%3Cproquest_cross%3E2714981011%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714981011&rft_id=info:pmid/&rfr_iscdi=true |