Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR
This paper proposes an algorithm to model and process streams of LiDAR data under an autonomous vehicle framework. LiDAR is assumed to be an exteroceptive sensor that allows the vehicle to have dynamic 3D scene perception of its surroundings. We employ an encoder-decoder architecture based on 3D-Con...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-09, Vol.23 (9), p.14608-14619 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14619 |
---|---|
container_issue | 9 |
container_start_page | 14608 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 23 |
creator | Iqbal, Hafsa Campo, Damian Marin-Plaza, Pablo Marcenaro, Lucio Gomez, David Martin Regazzoni, Carlo |
description | This paper proposes an algorithm to model and process streams of LiDAR data under an autonomous vehicle framework. LiDAR is assumed to be an exteroceptive sensor that allows the vehicle to have dynamic 3D scene perception of its surroundings. We employ an encoder-decoder architecture based on 3D-Convolutional layers called 3D Convolution Encoder-Decoder (3D-CED), together with a transfer learning strategy to extract a set of features from point clouds, which are relevant in the context of autonomous driving. The resulting features allow to make inferences of the future point cloud data and detect multiple abstraction level anomalies in controlled scenarios by utilizing a probabilistic switching dynamic model called High Dimensional Markov Jump Particle Filter (HD-MJPF). Moreover, a comparison is provided between piecewise linear, piecewise nonlinear, and nonlinear predictive models for anomaly detection at multiple abstraction levels. Our approach is evaluated with data collected from the LiDAR sensors of the autonomous vehicle while performing certain tasks in a controlled environment. |
doi_str_mv | 10.1109/TITS.2021.3130974 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2714899370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9641754</ieee_id><sourcerecordid>2714899370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-727ba396fc597e12e1139a3d38944b53b30d9e4521006110b3ce6c4610242e4d3</originalsourceid><addsrcrecordid>eNo9kNtKw0AQhhdRsFYfQLxZ8DpxZw9J97K0HgoVpVbxbslhqlvSbNxNCr69CS1ezTB8_zDzEXINLAZg-m69WL_FnHGIBQimU3lCRqDUJGIMktOh5zLSTLFzchHCtp9KBTAin8-uxMrWX_QVfYFNa11NbU2nXetqt3NdoB_4bYsKA93bjIo5nbl676puILOKrrDxGLBus2EQaB9f2vl0dUnONlkV8OpYx-T94X49e4qWL4-L2XQZFVyLNkp5mmdCJ5tC6RSBI4DQmSjFREuZK5ELVmqUigNjSf9pLgpMCpkA45KjLMWY3B72Nt79dBhas3Wd7y8LhqcgJ1qLlPUUHKjCuxA8bkzj7S7zvwaYGQSaQaAZBJqjwD5zc8hYRPzndSIhVVL8AUP0axM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714899370</pqid></control><display><type>article</type><title>Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR</title><source>IEEE Electronic Library (IEL)</source><creator>Iqbal, Hafsa ; Campo, Damian ; Marin-Plaza, Pablo ; Marcenaro, Lucio ; Gomez, David Martin ; Regazzoni, Carlo</creator><creatorcontrib>Iqbal, Hafsa ; Campo, Damian ; Marin-Plaza, Pablo ; Marcenaro, Lucio ; Gomez, David Martin ; Regazzoni, Carlo</creatorcontrib><description>This paper proposes an algorithm to model and process streams of LiDAR data under an autonomous vehicle framework. LiDAR is assumed to be an exteroceptive sensor that allows the vehicle to have dynamic 3D scene perception of its surroundings. We employ an encoder-decoder architecture based on 3D-Convolutional layers called 3D Convolution Encoder-Decoder (3D-CED), together with a transfer learning strategy to extract a set of features from point clouds, which are relevant in the context of autonomous driving. The resulting features allow to make inferences of the future point cloud data and detect multiple abstraction level anomalies in controlled scenarios by utilizing a probabilistic switching dynamic model called High Dimensional Markov Jump Particle Filter (HD-MJPF). Moreover, a comparison is provided between piecewise linear, piecewise nonlinear, and nonlinear predictive models for anomaly detection at multiple abstraction levels. Our approach is evaluated with data collected from the LiDAR sensors of the autonomous vehicle while performing certain tasks in a controlled environment.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3130974</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3 D-convolutional encoder decoder ; Algorithms ; Anomalies ; anomaly detection ; Autonomous vehicles ; Cameras ; Coders ; Dynamic models ; Encoders-Decoders ; Feature extraction ; hierarchical generalize dynamic Bayesian network ; high dimensional Markov jump particle filter ; Laser radar ; Lidar ; LSTM ; Perception ; Point cloud compression ; Prediction models ; Solid modeling ; Three-dimensional displays ; transfer learning</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-09, Vol.23 (9), p.14608-14619</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-727ba396fc597e12e1139a3d38944b53b30d9e4521006110b3ce6c4610242e4d3</citedby><cites>FETCH-LOGICAL-c293t-727ba396fc597e12e1139a3d38944b53b30d9e4521006110b3ce6c4610242e4d3</cites><orcidid>0000-0001-6617-1417 ; 0000-0003-1515-120X ; 0000-0003-3720-9759 ; 0000-0001-7196-434X ; 0000-0003-3764-5083 ; 0000-0002-1773-8066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9641754$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9641754$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iqbal, Hafsa</creatorcontrib><creatorcontrib>Campo, Damian</creatorcontrib><creatorcontrib>Marin-Plaza, Pablo</creatorcontrib><creatorcontrib>Marcenaro, Lucio</creatorcontrib><creatorcontrib>Gomez, David Martin</creatorcontrib><creatorcontrib>Regazzoni, Carlo</creatorcontrib><title>Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper proposes an algorithm to model and process streams of LiDAR data under an autonomous vehicle framework. LiDAR is assumed to be an exteroceptive sensor that allows the vehicle to have dynamic 3D scene perception of its surroundings. We employ an encoder-decoder architecture based on 3D-Convolutional layers called 3D Convolution Encoder-Decoder (3D-CED), together with a transfer learning strategy to extract a set of features from point clouds, which are relevant in the context of autonomous driving. The resulting features allow to make inferences of the future point cloud data and detect multiple abstraction level anomalies in controlled scenarios by utilizing a probabilistic switching dynamic model called High Dimensional Markov Jump Particle Filter (HD-MJPF). Moreover, a comparison is provided between piecewise linear, piecewise nonlinear, and nonlinear predictive models for anomaly detection at multiple abstraction levels. Our approach is evaluated with data collected from the LiDAR sensors of the autonomous vehicle while performing certain tasks in a controlled environment.</description><subject>3 D-convolutional encoder decoder</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>anomaly detection</subject><subject>Autonomous vehicles</subject><subject>Cameras</subject><subject>Coders</subject><subject>Dynamic models</subject><subject>Encoders-Decoders</subject><subject>Feature extraction</subject><subject>hierarchical generalize dynamic Bayesian network</subject><subject>high dimensional Markov jump particle filter</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>LSTM</subject><subject>Perception</subject><subject>Point cloud compression</subject><subject>Prediction models</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>transfer learning</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKw0AQhhdRsFYfQLxZ8DpxZw9J97K0HgoVpVbxbslhqlvSbNxNCr69CS1ezTB8_zDzEXINLAZg-m69WL_FnHGIBQimU3lCRqDUJGIMktOh5zLSTLFzchHCtp9KBTAin8-uxMrWX_QVfYFNa11NbU2nXetqt3NdoB_4bYsKA93bjIo5nbl676puILOKrrDxGLBus2EQaB9f2vl0dUnONlkV8OpYx-T94X49e4qWL4-L2XQZFVyLNkp5mmdCJ5tC6RSBI4DQmSjFREuZK5ELVmqUigNjSf9pLgpMCpkA45KjLMWY3B72Nt79dBhas3Wd7y8LhqcgJ1qLlPUUHKjCuxA8bkzj7S7zvwaYGQSaQaAZBJqjwD5zc8hYRPzndSIhVVL8AUP0axM</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Iqbal, Hafsa</creator><creator>Campo, Damian</creator><creator>Marin-Plaza, Pablo</creator><creator>Marcenaro, Lucio</creator><creator>Gomez, David Martin</creator><creator>Regazzoni, Carlo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6617-1417</orcidid><orcidid>https://orcid.org/0000-0003-1515-120X</orcidid><orcidid>https://orcid.org/0000-0003-3720-9759</orcidid><orcidid>https://orcid.org/0000-0001-7196-434X</orcidid><orcidid>https://orcid.org/0000-0003-3764-5083</orcidid><orcidid>https://orcid.org/0000-0002-1773-8066</orcidid></search><sort><creationdate>20220901</creationdate><title>Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR</title><author>Iqbal, Hafsa ; Campo, Damian ; Marin-Plaza, Pablo ; Marcenaro, Lucio ; Gomez, David Martin ; Regazzoni, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-727ba396fc597e12e1139a3d38944b53b30d9e4521006110b3ce6c4610242e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3 D-convolutional encoder decoder</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>anomaly detection</topic><topic>Autonomous vehicles</topic><topic>Cameras</topic><topic>Coders</topic><topic>Dynamic models</topic><topic>Encoders-Decoders</topic><topic>Feature extraction</topic><topic>hierarchical generalize dynamic Bayesian network</topic><topic>high dimensional Markov jump particle filter</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>LSTM</topic><topic>Perception</topic><topic>Point cloud compression</topic><topic>Prediction models</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iqbal, Hafsa</creatorcontrib><creatorcontrib>Campo, Damian</creatorcontrib><creatorcontrib>Marin-Plaza, Pablo</creatorcontrib><creatorcontrib>Marcenaro, Lucio</creatorcontrib><creatorcontrib>Gomez, David Martin</creatorcontrib><creatorcontrib>Regazzoni, Carlo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iqbal, Hafsa</au><au>Campo, Damian</au><au>Marin-Plaza, Pablo</au><au>Marcenaro, Lucio</au><au>Gomez, David Martin</au><au>Regazzoni, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>23</volume><issue>9</issue><spage>14608</spage><epage>14619</epage><pages>14608-14619</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper proposes an algorithm to model and process streams of LiDAR data under an autonomous vehicle framework. LiDAR is assumed to be an exteroceptive sensor that allows the vehicle to have dynamic 3D scene perception of its surroundings. We employ an encoder-decoder architecture based on 3D-Convolutional layers called 3D Convolution Encoder-Decoder (3D-CED), together with a transfer learning strategy to extract a set of features from point clouds, which are relevant in the context of autonomous driving. The resulting features allow to make inferences of the future point cloud data and detect multiple abstraction level anomalies in controlled scenarios by utilizing a probabilistic switching dynamic model called High Dimensional Markov Jump Particle Filter (HD-MJPF). Moreover, a comparison is provided between piecewise linear, piecewise nonlinear, and nonlinear predictive models for anomaly detection at multiple abstraction levels. Our approach is evaluated with data collected from the LiDAR sensors of the autonomous vehicle while performing certain tasks in a controlled environment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3130974</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6617-1417</orcidid><orcidid>https://orcid.org/0000-0003-1515-120X</orcidid><orcidid>https://orcid.org/0000-0003-3720-9759</orcidid><orcidid>https://orcid.org/0000-0001-7196-434X</orcidid><orcidid>https://orcid.org/0000-0003-3764-5083</orcidid><orcidid>https://orcid.org/0000-0002-1773-8066</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2022-09, Vol.23 (9), p.14608-14619 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2714899370 |
source | IEEE Electronic Library (IEL) |
subjects | 3 D-convolutional encoder decoder Algorithms Anomalies anomaly detection Autonomous vehicles Cameras Coders Dynamic models Encoders-Decoders Feature extraction hierarchical generalize dynamic Bayesian network high dimensional Markov jump particle filter Laser radar Lidar LSTM Perception Point cloud compression Prediction models Solid modeling Three-dimensional displays transfer learning |
title | Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Perception%20in%20Autonomous%20Vehicles%20via%203D%20Convolutional%20Representations%20on%20LiDAR&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Iqbal,%20Hafsa&rft.date=2022-09-01&rft.volume=23&rft.issue=9&rft.spage=14608&rft.epage=14619&rft.pages=14608-14619&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3130974&rft_dat=%3Cproquest_RIE%3E2714899370%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714899370&rft_id=info:pmid/&rft_ieee_id=9641754&rfr_iscdi=true |