Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR

This paper proposes an algorithm to model and process streams of LiDAR data under an autonomous vehicle framework. LiDAR is assumed to be an exteroceptive sensor that allows the vehicle to have dynamic 3D scene perception of its surroundings. We employ an encoder-decoder architecture based on 3D-Con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-09, Vol.23 (9), p.14608-14619
Hauptverfasser: Iqbal, Hafsa, Campo, Damian, Marin-Plaza, Pablo, Marcenaro, Lucio, Gomez, David Martin, Regazzoni, Carlo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14619
container_issue 9
container_start_page 14608
container_title IEEE transactions on intelligent transportation systems
container_volume 23
creator Iqbal, Hafsa
Campo, Damian
Marin-Plaza, Pablo
Marcenaro, Lucio
Gomez, David Martin
Regazzoni, Carlo
description This paper proposes an algorithm to model and process streams of LiDAR data under an autonomous vehicle framework. LiDAR is assumed to be an exteroceptive sensor that allows the vehicle to have dynamic 3D scene perception of its surroundings. We employ an encoder-decoder architecture based on 3D-Convolutional layers called 3D Convolution Encoder-Decoder (3D-CED), together with a transfer learning strategy to extract a set of features from point clouds, which are relevant in the context of autonomous driving. The resulting features allow to make inferences of the future point cloud data and detect multiple abstraction level anomalies in controlled scenarios by utilizing a probabilistic switching dynamic model called High Dimensional Markov Jump Particle Filter (HD-MJPF). Moreover, a comparison is provided between piecewise linear, piecewise nonlinear, and nonlinear predictive models for anomaly detection at multiple abstraction levels. Our approach is evaluated with data collected from the LiDAR sensors of the autonomous vehicle while performing certain tasks in a controlled environment.
doi_str_mv 10.1109/TITS.2021.3130974
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2714899370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9641754</ieee_id><sourcerecordid>2714899370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-727ba396fc597e12e1139a3d38944b53b30d9e4521006110b3ce6c4610242e4d3</originalsourceid><addsrcrecordid>eNo9kNtKw0AQhhdRsFYfQLxZ8DpxZw9J97K0HgoVpVbxbslhqlvSbNxNCr69CS1ezTB8_zDzEXINLAZg-m69WL_FnHGIBQimU3lCRqDUJGIMktOh5zLSTLFzchHCtp9KBTAin8-uxMrWX_QVfYFNa11NbU2nXetqt3NdoB_4bYsKA93bjIo5nbl676puILOKrrDxGLBus2EQaB9f2vl0dUnONlkV8OpYx-T94X49e4qWL4-L2XQZFVyLNkp5mmdCJ5tC6RSBI4DQmSjFREuZK5ELVmqUigNjSf9pLgpMCpkA45KjLMWY3B72Nt79dBhas3Wd7y8LhqcgJ1qLlPUUHKjCuxA8bkzj7S7zvwaYGQSaQaAZBJqjwD5zc8hYRPzndSIhVVL8AUP0axM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714899370</pqid></control><display><type>article</type><title>Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR</title><source>IEEE Electronic Library (IEL)</source><creator>Iqbal, Hafsa ; Campo, Damian ; Marin-Plaza, Pablo ; Marcenaro, Lucio ; Gomez, David Martin ; Regazzoni, Carlo</creator><creatorcontrib>Iqbal, Hafsa ; Campo, Damian ; Marin-Plaza, Pablo ; Marcenaro, Lucio ; Gomez, David Martin ; Regazzoni, Carlo</creatorcontrib><description>This paper proposes an algorithm to model and process streams of LiDAR data under an autonomous vehicle framework. LiDAR is assumed to be an exteroceptive sensor that allows the vehicle to have dynamic 3D scene perception of its surroundings. We employ an encoder-decoder architecture based on 3D-Convolutional layers called 3D Convolution Encoder-Decoder (3D-CED), together with a transfer learning strategy to extract a set of features from point clouds, which are relevant in the context of autonomous driving. The resulting features allow to make inferences of the future point cloud data and detect multiple abstraction level anomalies in controlled scenarios by utilizing a probabilistic switching dynamic model called High Dimensional Markov Jump Particle Filter (HD-MJPF). Moreover, a comparison is provided between piecewise linear, piecewise nonlinear, and nonlinear predictive models for anomaly detection at multiple abstraction levels. Our approach is evaluated with data collected from the LiDAR sensors of the autonomous vehicle while performing certain tasks in a controlled environment.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2021.3130974</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3 D-convolutional encoder decoder ; Algorithms ; Anomalies ; anomaly detection ; Autonomous vehicles ; Cameras ; Coders ; Dynamic models ; Encoders-Decoders ; Feature extraction ; hierarchical generalize dynamic Bayesian network ; high dimensional Markov jump particle filter ; Laser radar ; Lidar ; LSTM ; Perception ; Point cloud compression ; Prediction models ; Solid modeling ; Three-dimensional displays ; transfer learning</subject><ispartof>IEEE transactions on intelligent transportation systems, 2022-09, Vol.23 (9), p.14608-14619</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-727ba396fc597e12e1139a3d38944b53b30d9e4521006110b3ce6c4610242e4d3</citedby><cites>FETCH-LOGICAL-c293t-727ba396fc597e12e1139a3d38944b53b30d9e4521006110b3ce6c4610242e4d3</cites><orcidid>0000-0001-6617-1417 ; 0000-0003-1515-120X ; 0000-0003-3720-9759 ; 0000-0001-7196-434X ; 0000-0003-3764-5083 ; 0000-0002-1773-8066</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9641754$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9641754$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Iqbal, Hafsa</creatorcontrib><creatorcontrib>Campo, Damian</creatorcontrib><creatorcontrib>Marin-Plaza, Pablo</creatorcontrib><creatorcontrib>Marcenaro, Lucio</creatorcontrib><creatorcontrib>Gomez, David Martin</creatorcontrib><creatorcontrib>Regazzoni, Carlo</creatorcontrib><title>Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>This paper proposes an algorithm to model and process streams of LiDAR data under an autonomous vehicle framework. LiDAR is assumed to be an exteroceptive sensor that allows the vehicle to have dynamic 3D scene perception of its surroundings. We employ an encoder-decoder architecture based on 3D-Convolutional layers called 3D Convolution Encoder-Decoder (3D-CED), together with a transfer learning strategy to extract a set of features from point clouds, which are relevant in the context of autonomous driving. The resulting features allow to make inferences of the future point cloud data and detect multiple abstraction level anomalies in controlled scenarios by utilizing a probabilistic switching dynamic model called High Dimensional Markov Jump Particle Filter (HD-MJPF). Moreover, a comparison is provided between piecewise linear, piecewise nonlinear, and nonlinear predictive models for anomaly detection at multiple abstraction levels. Our approach is evaluated with data collected from the LiDAR sensors of the autonomous vehicle while performing certain tasks in a controlled environment.</description><subject>3 D-convolutional encoder decoder</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>anomaly detection</subject><subject>Autonomous vehicles</subject><subject>Cameras</subject><subject>Coders</subject><subject>Dynamic models</subject><subject>Encoders-Decoders</subject><subject>Feature extraction</subject><subject>hierarchical generalize dynamic Bayesian network</subject><subject>high dimensional Markov jump particle filter</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>LSTM</subject><subject>Perception</subject><subject>Point cloud compression</subject><subject>Prediction models</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>transfer learning</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kNtKw0AQhhdRsFYfQLxZ8DpxZw9J97K0HgoVpVbxbslhqlvSbNxNCr69CS1ezTB8_zDzEXINLAZg-m69WL_FnHGIBQimU3lCRqDUJGIMktOh5zLSTLFzchHCtp9KBTAin8-uxMrWX_QVfYFNa11NbU2nXetqt3NdoB_4bYsKA93bjIo5nbl676puILOKrrDxGLBus2EQaB9f2vl0dUnONlkV8OpYx-T94X49e4qWL4-L2XQZFVyLNkp5mmdCJ5tC6RSBI4DQmSjFREuZK5ELVmqUigNjSf9pLgpMCpkA45KjLMWY3B72Nt79dBhas3Wd7y8LhqcgJ1qLlPUUHKjCuxA8bkzj7S7zvwaYGQSaQaAZBJqjwD5zc8hYRPzndSIhVVL8AUP0axM</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Iqbal, Hafsa</creator><creator>Campo, Damian</creator><creator>Marin-Plaza, Pablo</creator><creator>Marcenaro, Lucio</creator><creator>Gomez, David Martin</creator><creator>Regazzoni, Carlo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6617-1417</orcidid><orcidid>https://orcid.org/0000-0003-1515-120X</orcidid><orcidid>https://orcid.org/0000-0003-3720-9759</orcidid><orcidid>https://orcid.org/0000-0001-7196-434X</orcidid><orcidid>https://orcid.org/0000-0003-3764-5083</orcidid><orcidid>https://orcid.org/0000-0002-1773-8066</orcidid></search><sort><creationdate>20220901</creationdate><title>Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR</title><author>Iqbal, Hafsa ; Campo, Damian ; Marin-Plaza, Pablo ; Marcenaro, Lucio ; Gomez, David Martin ; Regazzoni, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-727ba396fc597e12e1139a3d38944b53b30d9e4521006110b3ce6c4610242e4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>3 D-convolutional encoder decoder</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>anomaly detection</topic><topic>Autonomous vehicles</topic><topic>Cameras</topic><topic>Coders</topic><topic>Dynamic models</topic><topic>Encoders-Decoders</topic><topic>Feature extraction</topic><topic>hierarchical generalize dynamic Bayesian network</topic><topic>high dimensional Markov jump particle filter</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>LSTM</topic><topic>Perception</topic><topic>Point cloud compression</topic><topic>Prediction models</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iqbal, Hafsa</creatorcontrib><creatorcontrib>Campo, Damian</creatorcontrib><creatorcontrib>Marin-Plaza, Pablo</creatorcontrib><creatorcontrib>Marcenaro, Lucio</creatorcontrib><creatorcontrib>Gomez, David Martin</creatorcontrib><creatorcontrib>Regazzoni, Carlo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Iqbal, Hafsa</au><au>Campo, Damian</au><au>Marin-Plaza, Pablo</au><au>Marcenaro, Lucio</au><au>Gomez, David Martin</au><au>Regazzoni, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>23</volume><issue>9</issue><spage>14608</spage><epage>14619</epage><pages>14608-14619</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>This paper proposes an algorithm to model and process streams of LiDAR data under an autonomous vehicle framework. LiDAR is assumed to be an exteroceptive sensor that allows the vehicle to have dynamic 3D scene perception of its surroundings. We employ an encoder-decoder architecture based on 3D-Convolutional layers called 3D Convolution Encoder-Decoder (3D-CED), together with a transfer learning strategy to extract a set of features from point clouds, which are relevant in the context of autonomous driving. The resulting features allow to make inferences of the future point cloud data and detect multiple abstraction level anomalies in controlled scenarios by utilizing a probabilistic switching dynamic model called High Dimensional Markov Jump Particle Filter (HD-MJPF). Moreover, a comparison is provided between piecewise linear, piecewise nonlinear, and nonlinear predictive models for anomaly detection at multiple abstraction levels. Our approach is evaluated with data collected from the LiDAR sensors of the autonomous vehicle while performing certain tasks in a controlled environment.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2021.3130974</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6617-1417</orcidid><orcidid>https://orcid.org/0000-0003-1515-120X</orcidid><orcidid>https://orcid.org/0000-0003-3720-9759</orcidid><orcidid>https://orcid.org/0000-0001-7196-434X</orcidid><orcidid>https://orcid.org/0000-0003-3764-5083</orcidid><orcidid>https://orcid.org/0000-0002-1773-8066</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2022-09, Vol.23 (9), p.14608-14619
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2714899370
source IEEE Electronic Library (IEL)
subjects 3 D-convolutional encoder decoder
Algorithms
Anomalies
anomaly detection
Autonomous vehicles
Cameras
Coders
Dynamic models
Encoders-Decoders
Feature extraction
hierarchical generalize dynamic Bayesian network
high dimensional Markov jump particle filter
Laser radar
Lidar
LSTM
Perception
Point cloud compression
Prediction models
Solid modeling
Three-dimensional displays
transfer learning
title Modeling Perception in Autonomous Vehicles via 3D Convolutional Representations on LiDAR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T02%3A26%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Perception%20in%20Autonomous%20Vehicles%20via%203D%20Convolutional%20Representations%20on%20LiDAR&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Iqbal,%20Hafsa&rft.date=2022-09-01&rft.volume=23&rft.issue=9&rft.spage=14608&rft.epage=14619&rft.pages=14608-14619&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2021.3130974&rft_dat=%3Cproquest_RIE%3E2714899370%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714899370&rft_id=info:pmid/&rft_ieee_id=9641754&rfr_iscdi=true