Graph Segmentation-Based Pseudo-Labeling for Semi-Supervised Pathology Image Classification

Pathology image classification is an important step in cancer diagnosis and precision treatment. Training a pathology image classification model in a fully supervised manner requires exhaustive pixel-level manual annotations from pathologists, which may not be practical in real applications. Semi-su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2022, Vol.10, p.93960-93970
Hauptverfasser: Shin, Hong-Kyu, Uhmn, Kwang-Hyun, Choi, Kyuyeon, Xu, Zhixin, Jung, Seung-Won, Ko, Sung-Jea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93970
container_issue
container_start_page 93960
container_title IEEE access
container_volume 10
creator Shin, Hong-Kyu
Uhmn, Kwang-Hyun
Choi, Kyuyeon
Xu, Zhixin
Jung, Seung-Won
Ko, Sung-Jea
description Pathology image classification is an important step in cancer diagnosis and precision treatment. Training a pathology image classification model in a fully supervised manner requires exhaustive pixel-level manual annotations from pathologists, which may not be practical in real applications. Semi-supervised learning (SSL) has been widely used to exploit large amounts of unlabeled data to facilitate model training with a small set of labeled data. However, due to the limited annotations, it still suffers from the issue of inaccurate pseudo-labels of unlabeled data. In this paper, we propose a novel framework for semi-supervised pathology image classification, which incorporates graph-based segmentation to refine initial pseudo-labels of tissue regions by considering local and global contextual relationships of patches in whole-slide images (WSIs). Moreover, we define a new energy function for graph construction that allows the graph to take into account the uncertainty of network predictions on unlabeled data. Extensive experiments on two different pathology image datasets demonstrate the effectiveness of our method compared with state-of-the-art SSL baselines. In particular, when using 5% labeled data, our approach outperforms a strong baseline by 2.81% AUC.
doi_str_mv 10.1109/ACCESS.2022.3204000
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2714899183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9875297</ieee_id><doaj_id>oai_doaj_org_article_24ba0107c83544bba61ec2e7065d6448</doaj_id><sourcerecordid>2714899183</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-7f18586a345ed918177ab42b6017ae968ec9da9a63c05eb7d1ec863d1c63cf063</originalsourceid><addsrcrecordid>eNpNkc1L5EAQxYOssOL6F3gJeM5sf6U_jhpcHRhYYfS0h6bSqcQeMtNjd2bB_96eiYinKh6_96rgFcU1JQtKifl92zT36_WCEcYWnBFBCDkrLhiVpuI1lz--7T-Lq5Q2GSA6S7W6KP49RNi_lmsctribYPJhV91Bwq58SnjoQrWCFke_G8o-xIxtfbU-7DH-9ycGptcwhuG9XG5hwLIZISXfe3cK-lWc9zAmvPqcl8XLn_vn5rFa_X1YNrerynGup0r1VNdaAhc1doZqqhS0grWSUAVopEZnOjAguSM1tqqj6LTkHXVZ6Ynkl8Vyzu0CbOw--i3EdxvA25MQ4mAhTt6NaJlogVCinOa1EG0LMocxVETWnRRC56ybOWsfw9sB02Q34RB3-X3LFBXa5Ad5pvhMuRhSith_XaXEHkuxcyn2WIr9LCW7rmeXR8Qvh9GqZkbxD9Djh44</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714899183</pqid></control><display><type>article</type><title>Graph Segmentation-Based Pseudo-Labeling for Semi-Supervised Pathology Image Classification</title><source>DOAJ Directory of Open Access Journals</source><source>IEEE Xplore Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Shin, Hong-Kyu ; Uhmn, Kwang-Hyun ; Choi, Kyuyeon ; Xu, Zhixin ; Jung, Seung-Won ; Ko, Sung-Jea</creator><creatorcontrib>Shin, Hong-Kyu ; Uhmn, Kwang-Hyun ; Choi, Kyuyeon ; Xu, Zhixin ; Jung, Seung-Won ; Ko, Sung-Jea</creatorcontrib><description>Pathology image classification is an important step in cancer diagnosis and precision treatment. Training a pathology image classification model in a fully supervised manner requires exhaustive pixel-level manual annotations from pathologists, which may not be practical in real applications. Semi-supervised learning (SSL) has been widely used to exploit large amounts of unlabeled data to facilitate model training with a small set of labeled data. However, due to the limited annotations, it still suffers from the issue of inaccurate pseudo-labels of unlabeled data. In this paper, we propose a novel framework for semi-supervised pathology image classification, which incorporates graph-based segmentation to refine initial pseudo-labels of tissue regions by considering local and global contextual relationships of patches in whole-slide images (WSIs). Moreover, we define a new energy function for graph construction that allows the graph to take into account the uncertainty of network predictions on unlabeled data. Extensive experiments on two different pathology image datasets demonstrate the effectiveness of our method compared with state-of-the-art SSL baselines. In particular, when using 5% labeled data, our approach outperforms a strong baseline by 2.81% AUC.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2022.3204000</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annotations ; Classification ; Computational modeling ; Data models ; Graph-based segmentation ; Image classification ; Image segmentation ; Labeling ; Labels ; Medical imaging ; Pathology ; Predictive models ; pseudo-labeling ; Semi-supervised learning ; Training ; Training data</subject><ispartof>IEEE access, 2022, Vol.10, p.93960-93970</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-7f18586a345ed918177ab42b6017ae968ec9da9a63c05eb7d1ec863d1c63cf063</citedby><cites>FETCH-LOGICAL-c338t-7f18586a345ed918177ab42b6017ae968ec9da9a63c05eb7d1ec863d1c63cf063</cites><orcidid>0000-0002-0819-2575 ; 0000-0002-4875-7091 ; 0000-0002-1382-184X ; 0000-0002-0319-4467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9875297$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Shin, Hong-Kyu</creatorcontrib><creatorcontrib>Uhmn, Kwang-Hyun</creatorcontrib><creatorcontrib>Choi, Kyuyeon</creatorcontrib><creatorcontrib>Xu, Zhixin</creatorcontrib><creatorcontrib>Jung, Seung-Won</creatorcontrib><creatorcontrib>Ko, Sung-Jea</creatorcontrib><title>Graph Segmentation-Based Pseudo-Labeling for Semi-Supervised Pathology Image Classification</title><title>IEEE access</title><addtitle>Access</addtitle><description>Pathology image classification is an important step in cancer diagnosis and precision treatment. Training a pathology image classification model in a fully supervised manner requires exhaustive pixel-level manual annotations from pathologists, which may not be practical in real applications. Semi-supervised learning (SSL) has been widely used to exploit large amounts of unlabeled data to facilitate model training with a small set of labeled data. However, due to the limited annotations, it still suffers from the issue of inaccurate pseudo-labels of unlabeled data. In this paper, we propose a novel framework for semi-supervised pathology image classification, which incorporates graph-based segmentation to refine initial pseudo-labels of tissue regions by considering local and global contextual relationships of patches in whole-slide images (WSIs). Moreover, we define a new energy function for graph construction that allows the graph to take into account the uncertainty of network predictions on unlabeled data. Extensive experiments on two different pathology image datasets demonstrate the effectiveness of our method compared with state-of-the-art SSL baselines. In particular, when using 5% labeled data, our approach outperforms a strong baseline by 2.81% AUC.</description><subject>Annotations</subject><subject>Classification</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Graph-based segmentation</subject><subject>Image classification</subject><subject>Image segmentation</subject><subject>Labeling</subject><subject>Labels</subject><subject>Medical imaging</subject><subject>Pathology</subject><subject>Predictive models</subject><subject>pseudo-labeling</subject><subject>Semi-supervised learning</subject><subject>Training</subject><subject>Training data</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1L5EAQxYOssOL6F3gJeM5sf6U_jhpcHRhYYfS0h6bSqcQeMtNjd2bB_96eiYinKh6_96rgFcU1JQtKifl92zT36_WCEcYWnBFBCDkrLhiVpuI1lz--7T-Lq5Q2GSA6S7W6KP49RNi_lmsctribYPJhV91Bwq58SnjoQrWCFke_G8o-xIxtfbU-7DH-9ycGptcwhuG9XG5hwLIZISXfe3cK-lWc9zAmvPqcl8XLn_vn5rFa_X1YNrerynGup0r1VNdaAhc1doZqqhS0grWSUAVopEZnOjAguSM1tqqj6LTkHXVZ6Ynkl8Vyzu0CbOw--i3EdxvA25MQ4mAhTt6NaJlogVCinOa1EG0LMocxVETWnRRC56ybOWsfw9sB02Q34RB3-X3LFBXa5Ad5pvhMuRhSith_XaXEHkuxcyn2WIr9LCW7rmeXR8Qvh9GqZkbxD9Djh44</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Shin, Hong-Kyu</creator><creator>Uhmn, Kwang-Hyun</creator><creator>Choi, Kyuyeon</creator><creator>Xu, Zhixin</creator><creator>Jung, Seung-Won</creator><creator>Ko, Sung-Jea</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0819-2575</orcidid><orcidid>https://orcid.org/0000-0002-4875-7091</orcidid><orcidid>https://orcid.org/0000-0002-1382-184X</orcidid><orcidid>https://orcid.org/0000-0002-0319-4467</orcidid></search><sort><creationdate>2022</creationdate><title>Graph Segmentation-Based Pseudo-Labeling for Semi-Supervised Pathology Image Classification</title><author>Shin, Hong-Kyu ; Uhmn, Kwang-Hyun ; Choi, Kyuyeon ; Xu, Zhixin ; Jung, Seung-Won ; Ko, Sung-Jea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-7f18586a345ed918177ab42b6017ae968ec9da9a63c05eb7d1ec863d1c63cf063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annotations</topic><topic>Classification</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Graph-based segmentation</topic><topic>Image classification</topic><topic>Image segmentation</topic><topic>Labeling</topic><topic>Labels</topic><topic>Medical imaging</topic><topic>Pathology</topic><topic>Predictive models</topic><topic>pseudo-labeling</topic><topic>Semi-supervised learning</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Hong-Kyu</creatorcontrib><creatorcontrib>Uhmn, Kwang-Hyun</creatorcontrib><creatorcontrib>Choi, Kyuyeon</creatorcontrib><creatorcontrib>Xu, Zhixin</creatorcontrib><creatorcontrib>Jung, Seung-Won</creatorcontrib><creatorcontrib>Ko, Sung-Jea</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Hong-Kyu</au><au>Uhmn, Kwang-Hyun</au><au>Choi, Kyuyeon</au><au>Xu, Zhixin</au><au>Jung, Seung-Won</au><au>Ko, Sung-Jea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graph Segmentation-Based Pseudo-Labeling for Semi-Supervised Pathology Image Classification</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2022</date><risdate>2022</risdate><volume>10</volume><spage>93960</spage><epage>93970</epage><pages>93960-93970</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Pathology image classification is an important step in cancer diagnosis and precision treatment. Training a pathology image classification model in a fully supervised manner requires exhaustive pixel-level manual annotations from pathologists, which may not be practical in real applications. Semi-supervised learning (SSL) has been widely used to exploit large amounts of unlabeled data to facilitate model training with a small set of labeled data. However, due to the limited annotations, it still suffers from the issue of inaccurate pseudo-labels of unlabeled data. In this paper, we propose a novel framework for semi-supervised pathology image classification, which incorporates graph-based segmentation to refine initial pseudo-labels of tissue regions by considering local and global contextual relationships of patches in whole-slide images (WSIs). Moreover, we define a new energy function for graph construction that allows the graph to take into account the uncertainty of network predictions on unlabeled data. Extensive experiments on two different pathology image datasets demonstrate the effectiveness of our method compared with state-of-the-art SSL baselines. In particular, when using 5% labeled data, our approach outperforms a strong baseline by 2.81% AUC.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2022.3204000</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0819-2575</orcidid><orcidid>https://orcid.org/0000-0002-4875-7091</orcidid><orcidid>https://orcid.org/0000-0002-1382-184X</orcidid><orcidid>https://orcid.org/0000-0002-0319-4467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2022, Vol.10, p.93960-93970
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2714899183
source DOAJ Directory of Open Access Journals; IEEE Xplore Open Access Journals; EZB Electronic Journals Library
subjects Annotations
Classification
Computational modeling
Data models
Graph-based segmentation
Image classification
Image segmentation
Labeling
Labels
Medical imaging
Pathology
Predictive models
pseudo-labeling
Semi-supervised learning
Training
Training data
title Graph Segmentation-Based Pseudo-Labeling for Semi-Supervised Pathology Image Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graph%20Segmentation-Based%20Pseudo-Labeling%20for%20Semi-Supervised%20Pathology%20Image%20Classification&rft.jtitle=IEEE%20access&rft.au=Shin,%20Hong-Kyu&rft.date=2022&rft.volume=10&rft.spage=93960&rft.epage=93970&rft.pages=93960-93970&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2022.3204000&rft_dat=%3Cproquest_ieee_%3E2714899183%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714899183&rft_id=info:pmid/&rft_ieee_id=9875297&rft_doaj_id=oai_doaj_org_article_24ba0107c83544bba61ec2e7065d6448&rfr_iscdi=true