Adaptive Federated Deep Reinforcement Learning for Proactive Content Caching in Edge Computing

With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2022-12, Vol.33 (12), p.4767-4782
Hauptverfasser: Qiao, Dewen, Guo, Songtao, Liu, Defang, Long, Saiqin, Zhou, Pengzhan, Li, Zhetao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4782
container_issue 12
container_start_page 4767
container_title IEEE transactions on parallel and distributed systems
container_volume 33
creator Qiao, Dewen
Guo, Songtao
Liu, Defang
Long, Saiqin
Zhou, Pengzhan
Li, Zhetao
description With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content in local cache to achieve fast and repetitive data access while protecting the users' privacy. However, due to the non-independent and identically distributed (Non-IID) data across the clients and limited edge resources, it is unrealistic for FL to aggregate all participated devices in parallel for model update and adopt the fixed iteration frequency in local training process. To address this issue, we propose a distributed resources-efficient FPC policy to improve the content caching efficiency and reduce the resources consumption. Through theoretical analysis, we first formulate the FPC problem into a stacked autoencoders (SAE) model loss minimization problem while satisfying resources constraint. We then propose an adaptive FPC (AFPC) algorithm combined deep reinforcement learning (DRL) consisting of two mechanisms of client selection and local iterations number decision. Next, we show that when training data are Non-IID, aggregating the model parameters of all participated devices may be not an optimal strategy to improve the FL-based content caching efficiency, and it is more meaningful to adopt adaptive local iteration frequency when resources are limited. Finally, experimental results in three real datasets demonstrate that AFPC can effectively improve cache efficiency up to 38.4\% % and 6.84\% % , and save resources up to 47.4\% % and 35.6\% % , respectively, compared with traditional multi-armed bandit (MAB)-based and FL-based algorithms.
doi_str_mv 10.1109/TPDS.2022.3201983
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2714893627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9868114</ieee_id><sourcerecordid>2714893627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-4ba99a720053e7a7b5086d47892ab4d7984b6f9eb5ef11e9b574994c03bfea613</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2Y_szrG0VoWCRevVZZNMaopN4iYV_Pcmtnia4f2YgYexa-ATAI5369X8dSK4EBMpOKCVJ2wEWttYgJWn_c6VjlEAnrOLtt1yDkpzNWLv09w3XflN0YJyCr6jPJoTNdELlVVRh4x2VHXRknyoymoT9VK0CrXP_jqzuuoGe-azj8Etq-g-3wz6rtl3vXLJzgr_2dLVcY7Z2-J-PXuMl88PT7PpMs4Eyi5WqUf0RnCuJRlvUs1tkitjUfhU5QatSpMCKdVUABCm2ihElXGZFuQTkGN2e7jbhPprT23ntvU-VP1LJwwoizIRpk_BIZWFum0DFa4J5c6HHwfcDRjdgNENGN0RY9-5OXRKIvrPo00sgJK_mp5uJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714893627</pqid></control><display><type>article</type><title>Adaptive Federated Deep Reinforcement Learning for Proactive Content Caching in Edge Computing</title><source>IEEE Electronic Library (IEL)</source><creator>Qiao, Dewen ; Guo, Songtao ; Liu, Defang ; Long, Saiqin ; Zhou, Pengzhan ; Li, Zhetao</creator><creatorcontrib>Qiao, Dewen ; Guo, Songtao ; Liu, Defang ; Long, Saiqin ; Zhou, Pengzhan ; Li, Zhetao</creatorcontrib><description><![CDATA[With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content in local cache to achieve fast and repetitive data access while protecting the users' privacy. However, due to the non-independent and identically distributed (Non-IID) data across the clients and limited edge resources, it is unrealistic for FL to aggregate all participated devices in parallel for model update and adopt the fixed iteration frequency in local training process. To address this issue, we propose a distributed resources-efficient FPC policy to improve the content caching efficiency and reduce the resources consumption. Through theoretical analysis, we first formulate the FPC problem into a stacked autoencoders (SAE) model loss minimization problem while satisfying resources constraint. We then propose an adaptive FPC (AFPC) algorithm combined deep reinforcement learning (DRL) consisting of two mechanisms of client selection and local iterations number decision. Next, we show that when training data are Non-IID, aggregating the model parameters of all participated devices may be not an optimal strategy to improve the FL-based content caching efficiency, and it is more meaningful to adopt adaptive local iteration frequency when resources are limited. Finally, experimental results in three real datasets demonstrate that AFPC can effectively improve cache efficiency up to 38.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq1-3201983.gif"/> </inline-formula> and 6.84<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq2-3201983.gif"/> </inline-formula>, and save resources up to 47.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq3-3201983.gif"/> </inline-formula> and 35.6<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq4-3201983.gif"/> </inline-formula>, respectively, compared with traditional multi-armed bandit (MAB)-based and FL-based algorithms.]]></description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2022.3201983</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation models ; Adaptive algorithms ; Caching ; Cloud computing ; Content caching ; Data models ; Deep learning ; deep reinforcement learning ; Delays ; Edge computing ; Efficiency ; Feature extraction ; federated learning ; Internet of Things ; Iterative methods ; Machine learning ; Optimization ; Reinforcement learning ; resource constraint ; Servers ; Training</subject><ispartof>IEEE transactions on parallel and distributed systems, 2022-12, Vol.33 (12), p.4767-4782</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-4ba99a720053e7a7b5086d47892ab4d7984b6f9eb5ef11e9b574994c03bfea613</citedby><cites>FETCH-LOGICAL-c293t-4ba99a720053e7a7b5086d47892ab4d7984b6f9eb5ef11e9b574994c03bfea613</cites><orcidid>0000-0001-6741-4871 ; 0000-0002-8796-5969 ; 0000-0002-7804-0286 ; 0000-0001-7119-8673</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9868114$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9868114$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Qiao, Dewen</creatorcontrib><creatorcontrib>Guo, Songtao</creatorcontrib><creatorcontrib>Liu, Defang</creatorcontrib><creatorcontrib>Long, Saiqin</creatorcontrib><creatorcontrib>Zhou, Pengzhan</creatorcontrib><creatorcontrib>Li, Zhetao</creatorcontrib><title>Adaptive Federated Deep Reinforcement Learning for Proactive Content Caching in Edge Computing</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description><![CDATA[With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content in local cache to achieve fast and repetitive data access while protecting the users' privacy. However, due to the non-independent and identically distributed (Non-IID) data across the clients and limited edge resources, it is unrealistic for FL to aggregate all participated devices in parallel for model update and adopt the fixed iteration frequency in local training process. To address this issue, we propose a distributed resources-efficient FPC policy to improve the content caching efficiency and reduce the resources consumption. Through theoretical analysis, we first formulate the FPC problem into a stacked autoencoders (SAE) model loss minimization problem while satisfying resources constraint. We then propose an adaptive FPC (AFPC) algorithm combined deep reinforcement learning (DRL) consisting of two mechanisms of client selection and local iterations number decision. Next, we show that when training data are Non-IID, aggregating the model parameters of all participated devices may be not an optimal strategy to improve the FL-based content caching efficiency, and it is more meaningful to adopt adaptive local iteration frequency when resources are limited. Finally, experimental results in three real datasets demonstrate that AFPC can effectively improve cache efficiency up to 38.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq1-3201983.gif"/> </inline-formula> and 6.84<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq2-3201983.gif"/> </inline-formula>, and save resources up to 47.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq3-3201983.gif"/> </inline-formula> and 35.6<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq4-3201983.gif"/> </inline-formula>, respectively, compared with traditional multi-armed bandit (MAB)-based and FL-based algorithms.]]></description><subject>Adaptation models</subject><subject>Adaptive algorithms</subject><subject>Caching</subject><subject>Cloud computing</subject><subject>Content caching</subject><subject>Data models</subject><subject>Deep learning</subject><subject>deep reinforcement learning</subject><subject>Delays</subject><subject>Edge computing</subject><subject>Efficiency</subject><subject>Feature extraction</subject><subject>federated learning</subject><subject>Internet of Things</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Reinforcement learning</subject><subject>resource constraint</subject><subject>Servers</subject><subject>Training</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE7d2Y_szrG0VoWCRevVZZNMaopN4iYV_Pcmtnia4f2YgYexa-ATAI5369X8dSK4EBMpOKCVJ2wEWttYgJWn_c6VjlEAnrOLtt1yDkpzNWLv09w3XflN0YJyCr6jPJoTNdELlVVRh4x2VHXRknyoymoT9VK0CrXP_jqzuuoGe-azj8Etq-g-3wz6rtl3vXLJzgr_2dLVcY7Z2-J-PXuMl88PT7PpMs4Eyi5WqUf0RnCuJRlvUs1tkitjUfhU5QatSpMCKdVUABCm2ihElXGZFuQTkGN2e7jbhPprT23ntvU-VP1LJwwoizIRpk_BIZWFum0DFa4J5c6HHwfcDRjdgNENGN0RY9-5OXRKIvrPo00sgJK_mp5uJg</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Qiao, Dewen</creator><creator>Guo, Songtao</creator><creator>Liu, Defang</creator><creator>Long, Saiqin</creator><creator>Zhou, Pengzhan</creator><creator>Li, Zhetao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6741-4871</orcidid><orcidid>https://orcid.org/0000-0002-8796-5969</orcidid><orcidid>https://orcid.org/0000-0002-7804-0286</orcidid><orcidid>https://orcid.org/0000-0001-7119-8673</orcidid></search><sort><creationdate>20221201</creationdate><title>Adaptive Federated Deep Reinforcement Learning for Proactive Content Caching in Edge Computing</title><author>Qiao, Dewen ; Guo, Songtao ; Liu, Defang ; Long, Saiqin ; Zhou, Pengzhan ; Li, Zhetao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-4ba99a720053e7a7b5086d47892ab4d7984b6f9eb5ef11e9b574994c03bfea613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive algorithms</topic><topic>Caching</topic><topic>Cloud computing</topic><topic>Content caching</topic><topic>Data models</topic><topic>Deep learning</topic><topic>deep reinforcement learning</topic><topic>Delays</topic><topic>Edge computing</topic><topic>Efficiency</topic><topic>Feature extraction</topic><topic>federated learning</topic><topic>Internet of Things</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Reinforcement learning</topic><topic>resource constraint</topic><topic>Servers</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Dewen</creatorcontrib><creatorcontrib>Guo, Songtao</creatorcontrib><creatorcontrib>Liu, Defang</creatorcontrib><creatorcontrib>Long, Saiqin</creatorcontrib><creatorcontrib>Zhou, Pengzhan</creatorcontrib><creatorcontrib>Li, Zhetao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Qiao, Dewen</au><au>Guo, Songtao</au><au>Liu, Defang</au><au>Long, Saiqin</au><au>Zhou, Pengzhan</au><au>Li, Zhetao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Federated Deep Reinforcement Learning for Proactive Content Caching in Edge Computing</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2022-12-01</date><risdate>2022</risdate><volume>33</volume><issue>12</issue><spage>4767</spage><epage>4782</epage><pages>4767-4782</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract><![CDATA[With the aggravation of data explosion and backhaul loads on 5 G edge network, it is difficult for traditional centralized cloud to meet the low latency requirements for content access. The federated learning ( F L)-based p roactive content c aching (FPC) can alleviate the matter by placing content in local cache to achieve fast and repetitive data access while protecting the users' privacy. However, due to the non-independent and identically distributed (Non-IID) data across the clients and limited edge resources, it is unrealistic for FL to aggregate all participated devices in parallel for model update and adopt the fixed iteration frequency in local training process. To address this issue, we propose a distributed resources-efficient FPC policy to improve the content caching efficiency and reduce the resources consumption. Through theoretical analysis, we first formulate the FPC problem into a stacked autoencoders (SAE) model loss minimization problem while satisfying resources constraint. We then propose an adaptive FPC (AFPC) algorithm combined deep reinforcement learning (DRL) consisting of two mechanisms of client selection and local iterations number decision. Next, we show that when training data are Non-IID, aggregating the model parameters of all participated devices may be not an optimal strategy to improve the FL-based content caching efficiency, and it is more meaningful to adopt adaptive local iteration frequency when resources are limited. Finally, experimental results in three real datasets demonstrate that AFPC can effectively improve cache efficiency up to 38.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq1-3201983.gif"/> </inline-formula> and 6.84<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq2-3201983.gif"/> </inline-formula>, and save resources up to 47.4<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq3-3201983.gif"/> </inline-formula> and 35.6<inline-formula><tex-math notation="LaTeX">\%</tex-math> <mml:math><mml:mo>%</mml:mo></mml:math><inline-graphic xlink:href="guo-ieq4-3201983.gif"/> </inline-formula>, respectively, compared with traditional multi-armed bandit (MAB)-based and FL-based algorithms.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2022.3201983</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6741-4871</orcidid><orcidid>https://orcid.org/0000-0002-8796-5969</orcidid><orcidid>https://orcid.org/0000-0002-7804-0286</orcidid><orcidid>https://orcid.org/0000-0001-7119-8673</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2022-12, Vol.33 (12), p.4767-4782
issn 1045-9219
1558-2183
language eng
recordid cdi_proquest_journals_2714893627
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adaptive algorithms
Caching
Cloud computing
Content caching
Data models
Deep learning
deep reinforcement learning
Delays
Edge computing
Efficiency
Feature extraction
federated learning
Internet of Things
Iterative methods
Machine learning
Optimization
Reinforcement learning
resource constraint
Servers
Training
title Adaptive Federated Deep Reinforcement Learning for Proactive Content Caching in Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Federated%20Deep%20Reinforcement%20Learning%20for%20Proactive%20Content%20Caching%20in%20Edge%20Computing&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Qiao,%20Dewen&rft.date=2022-12-01&rft.volume=33&rft.issue=12&rft.spage=4767&rft.epage=4782&rft.pages=4767-4782&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2022.3201983&rft_dat=%3Cproquest_RIE%3E2714893627%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714893627&rft_id=info:pmid/&rft_ieee_id=9868114&rfr_iscdi=true