Unifying Spatial Accelerator Compilation With Idiomatic and Modular Transformations

Spatial accelerators provide high performance, energy efficiency, and flexibility. Recent design frameworks enable these architectures to be quickly designed and customized to a domain. However, constructing a compiler for this immense design space is challenging, first because accelerators express...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE MICRO 2022-09, Vol.42 (5), p.59-69
Hauptverfasser: Weng, Jian, Liu, Sihao, Kupsh, Dylan, Nowatzki, Tony
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 69
container_issue 5
container_start_page 59
container_title IEEE MICRO
container_volume 42
creator Weng, Jian
Liu, Sihao
Kupsh, Dylan
Nowatzki, Tony
description Spatial accelerators provide high performance, energy efficiency, and flexibility. Recent design frameworks enable these architectures to be quickly designed and customized to a domain. However, constructing a compiler for this immense design space is challenging, first because accelerators express programs with high-level idioms that are difficult to recognize. Second, it is unpredictable whether certain transformations are beneficial or will lead to infeasible hardware mappings. Our work develops a general spatial-accelerator compiler with two key ideas. First, we propose an approach to recognize and represent useful dataflow idioms, along with a novel idiomatic memory representation. Second, we propose the principle of modular compilation, which combines hardware-aware transformation selection and an iterative approach to handle uncertainty. Our compiler achieves 2.3× speedup, and 98.7× area-normalized speedup over high-end server central processing unit (CPU).
doi_str_mv 10.1109/MM.2022.3189976
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2714892975</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9826882</ieee_id><sourcerecordid>2714892975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c173t-484a48eeed7db1ed87e3e992efd3b2f05df91baabc4b6756c761787d5b2522653</originalsourceid><addsrcrecordid>eNo9kL1PwzAQxS0EEqUwM7BYYk5rn5PYHquKj0qNGNqK0XJiB1wlcbDTof89Ka2YTu_0e3dPD6FHSmaUEjkvihkQgBmjQkqeX6EJlYwnKU3ZNZoQ4JBQzuAW3cW4J4RkQMQEbXadq4-u-8KbXg9ON3hRVbaxQQ8-4KVve9eMe9_hTzd845Vxvh11hXVncOHNodEBb4PuYu1D-0fGe3RT6ybah8ucot3ry3b5nqw_3lbLxTqpxiBDkopUp8Jaa7gpqTWCW2alBFsbVkJNMlNLWmpdVmmZ8yyveE654CYrIQPIMzZFz-e7ffA_BxsHtfeH0I0vFXCaCgmSn6j5maqCjzHYWvXBtTocFSXq1JwqCnVqTl2aGx1PZ4cbw_3TUkAuBLBf5pNqoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714892975</pqid></control><display><type>article</type><title>Unifying Spatial Accelerator Compilation With Idiomatic and Modular Transformations</title><source>IEEE Electronic Library (IEL)</source><creator>Weng, Jian ; Liu, Sihao ; Kupsh, Dylan ; Nowatzki, Tony</creator><creatorcontrib>Weng, Jian ; Liu, Sihao ; Kupsh, Dylan ; Nowatzki, Tony</creatorcontrib><description>Spatial accelerators provide high performance, energy efficiency, and flexibility. Recent design frameworks enable these architectures to be quickly designed and customized to a domain. However, constructing a compiler for this immense design space is challenging, first because accelerators express programs with high-level idioms that are difficult to recognize. Second, it is unpredictable whether certain transformations are beneficial or will lead to infeasible hardware mappings. Our work develops a general spatial-accelerator compiler with two key ideas. First, we propose an approach to recognize and represent useful dataflow idioms, along with a novel idiomatic memory representation. Second, we propose the principle of modular compilation, which combines hardware-aware transformation selection and an iterative approach to handle uncertainty. Our compiler achieves 2.3× speedup, and 98.7× area-normalized speedup over high-end server central processing unit (CPU).</description><identifier>ISSN: 0272-1732</identifier><identifier>EISSN: 1937-4143</identifier><identifier>DOI: 10.1109/MM.2022.3189976</identifier><identifier>CODEN: IEMIDZ</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Accelerators ; Central processing units ; Codes ; Compilers ; CPUs ; Dynamic scheduling ; Hardware ; Hardware accelerators ; Micromechanical devices ; Program processors ; Spatial databases ; Topology ; Transformations (mathematics)</subject><ispartof>IEEE MICRO, 2022-09, Vol.42 (5), p.59-69</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c173t-484a48eeed7db1ed87e3e992efd3b2f05df91baabc4b6756c761787d5b2522653</cites><orcidid>0000-0001-8483-3824 ; 0000-0003-0937-2460 ; 0000-0002-7933-9941</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9826882$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9826882$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Liu, Sihao</creatorcontrib><creatorcontrib>Kupsh, Dylan</creatorcontrib><creatorcontrib>Nowatzki, Tony</creatorcontrib><title>Unifying Spatial Accelerator Compilation With Idiomatic and Modular Transformations</title><title>IEEE MICRO</title><addtitle>MM</addtitle><description>Spatial accelerators provide high performance, energy efficiency, and flexibility. Recent design frameworks enable these architectures to be quickly designed and customized to a domain. However, constructing a compiler for this immense design space is challenging, first because accelerators express programs with high-level idioms that are difficult to recognize. Second, it is unpredictable whether certain transformations are beneficial or will lead to infeasible hardware mappings. Our work develops a general spatial-accelerator compiler with two key ideas. First, we propose an approach to recognize and represent useful dataflow idioms, along with a novel idiomatic memory representation. Second, we propose the principle of modular compilation, which combines hardware-aware transformation selection and an iterative approach to handle uncertainty. Our compiler achieves 2.3× speedup, and 98.7× area-normalized speedup over high-end server central processing unit (CPU).</description><subject>Accelerators</subject><subject>Central processing units</subject><subject>Codes</subject><subject>Compilers</subject><subject>CPUs</subject><subject>Dynamic scheduling</subject><subject>Hardware</subject><subject>Hardware accelerators</subject><subject>Micromechanical devices</subject><subject>Program processors</subject><subject>Spatial databases</subject><subject>Topology</subject><subject>Transformations (mathematics)</subject><issn>0272-1732</issn><issn>1937-4143</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kL1PwzAQxS0EEqUwM7BYYk5rn5PYHquKj0qNGNqK0XJiB1wlcbDTof89Ka2YTu_0e3dPD6FHSmaUEjkvihkQgBmjQkqeX6EJlYwnKU3ZNZoQ4JBQzuAW3cW4J4RkQMQEbXadq4-u-8KbXg9ON3hRVbaxQQ8-4KVve9eMe9_hTzd845Vxvh11hXVncOHNodEBb4PuYu1D-0fGe3RT6ybah8ucot3ry3b5nqw_3lbLxTqpxiBDkopUp8Jaa7gpqTWCW2alBFsbVkJNMlNLWmpdVmmZ8yyveE654CYrIQPIMzZFz-e7ffA_BxsHtfeH0I0vFXCaCgmSn6j5maqCjzHYWvXBtTocFSXq1JwqCnVqTl2aGx1PZ4cbw_3TUkAuBLBf5pNqoQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Weng, Jian</creator><creator>Liu, Sihao</creator><creator>Kupsh, Dylan</creator><creator>Nowatzki, Tony</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8483-3824</orcidid><orcidid>https://orcid.org/0000-0003-0937-2460</orcidid><orcidid>https://orcid.org/0000-0002-7933-9941</orcidid></search><sort><creationdate>20220901</creationdate><title>Unifying Spatial Accelerator Compilation With Idiomatic and Modular Transformations</title><author>Weng, Jian ; Liu, Sihao ; Kupsh, Dylan ; Nowatzki, Tony</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c173t-484a48eeed7db1ed87e3e992efd3b2f05df91baabc4b6756c761787d5b2522653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accelerators</topic><topic>Central processing units</topic><topic>Codes</topic><topic>Compilers</topic><topic>CPUs</topic><topic>Dynamic scheduling</topic><topic>Hardware</topic><topic>Hardware accelerators</topic><topic>Micromechanical devices</topic><topic>Program processors</topic><topic>Spatial databases</topic><topic>Topology</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Jian</creatorcontrib><creatorcontrib>Liu, Sihao</creatorcontrib><creatorcontrib>Kupsh, Dylan</creatorcontrib><creatorcontrib>Nowatzki, Tony</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE MICRO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weng, Jian</au><au>Liu, Sihao</au><au>Kupsh, Dylan</au><au>Nowatzki, Tony</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unifying Spatial Accelerator Compilation With Idiomatic and Modular Transformations</atitle><jtitle>IEEE MICRO</jtitle><stitle>MM</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>42</volume><issue>5</issue><spage>59</spage><epage>69</epage><pages>59-69</pages><issn>0272-1732</issn><eissn>1937-4143</eissn><coden>IEMIDZ</coden><abstract>Spatial accelerators provide high performance, energy efficiency, and flexibility. Recent design frameworks enable these architectures to be quickly designed and customized to a domain. However, constructing a compiler for this immense design space is challenging, first because accelerators express programs with high-level idioms that are difficult to recognize. Second, it is unpredictable whether certain transformations are beneficial or will lead to infeasible hardware mappings. Our work develops a general spatial-accelerator compiler with two key ideas. First, we propose an approach to recognize and represent useful dataflow idioms, along with a novel idiomatic memory representation. Second, we propose the principle of modular compilation, which combines hardware-aware transformation selection and an iterative approach to handle uncertainty. Our compiler achieves 2.3× speedup, and 98.7× area-normalized speedup over high-end server central processing unit (CPU).</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/MM.2022.3189976</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8483-3824</orcidid><orcidid>https://orcid.org/0000-0003-0937-2460</orcidid><orcidid>https://orcid.org/0000-0002-7933-9941</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0272-1732
ispartof IEEE MICRO, 2022-09, Vol.42 (5), p.59-69
issn 0272-1732
1937-4143
language eng
recordid cdi_proquest_journals_2714892975
source IEEE Electronic Library (IEL)
subjects Accelerators
Central processing units
Codes
Compilers
CPUs
Dynamic scheduling
Hardware
Hardware accelerators
Micromechanical devices
Program processors
Spatial databases
Topology
Transformations (mathematics)
title Unifying Spatial Accelerator Compilation With Idiomatic and Modular Transformations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A30%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unifying%20Spatial%20Accelerator%20Compilation%20With%20Idiomatic%20and%20Modular%20Transformations&rft.jtitle=IEEE%20MICRO&rft.au=Weng,%20Jian&rft.date=2022-09-01&rft.volume=42&rft.issue=5&rft.spage=59&rft.epage=69&rft.pages=59-69&rft.issn=0272-1732&rft.eissn=1937-4143&rft.coden=IEMIDZ&rft_id=info:doi/10.1109/MM.2022.3189976&rft_dat=%3Cproquest_RIE%3E2714892975%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714892975&rft_id=info:pmid/&rft_ieee_id=9826882&rfr_iscdi=true