An Extended-FEM Model for CO2 Leakage Through a Naturally Fractured Cap-Rock During Carbon Dioxide Sequestration
In this paper, a numerical model is developed for the assessment of carbon dioxide transport through naturally fractured cap-rocks during CO 2 sequestration in underground aquifers. The cap-rock contains two types of fracture with different length scales: micro-cracks (fissures) and macro-cracks (fa...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2022-10, Vol.145 (1), p.175-195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | 1 |
container_start_page | 175 |
container_title | Transport in porous media |
container_volume | 145 |
creator | Khoei, A. R. Ehsani, R. Hosseini, N. |
description | In this paper, a numerical model is developed for the assessment of carbon dioxide transport through naturally fractured cap-rocks during CO
2
sequestration in underground aquifers. The cap-rock contains two types of fracture with different length scales: micro-cracks (fissures) and macro-cracks (faults). The effect of micro-cracks is incorporated implicitly by modifying the intrinsic permeability tensor of porous matrix, while the macro-cracks are modeled explicitly using the extended finite element method (X-FEM). The fractured porous medium is decomposed into the porous matrix and fracture domain, which are occupied with two immiscible fluid phases, water and CO
2
. The flow inside the matrix domain is governed by the Darcy law, while the flow within the fracture is modeled using the Poiseuille flow. The mass conservation law is fulfilled for each fluid phase at both porous matrix and fracture domain; moreover, the mass exchange between the matrix and fracture is guaranteed through the integral formulation of mass conservation law. Applying the X-FEM technique, the explicit representation of macro-cracks is modeled by enriching the standard finite element approximation space with an enrichment function. Finally, several numerical examples of CO
2
injection into a brine aquifer below a naturally fractured cap-rock are modeled in order to investigate the effects of cracks’ aperture and orientation as well as the temperature of aquifer and the depth of injection on the leakage pattern of the carbon dioxide through the cap-rock. |
doi_str_mv | 10.1007/s11242-022-01845-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2714781464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714781464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-817fd8715c8fb63ab78a25dfb46c55a61befb554a837575609a0f7ccb6a24b923</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTb47WRZ9QFILZWgrC0ncdq0IQ5OorZ_j9sgsWMxmhnp3rmaA8A9wY8EY_XUEEI5RZiGIhEXaH8BBkQohohk_BIMMJExYjFh1-CmabYYB1vEB6AeVXB6aG2V2QzNpgu4cJktYe48HC8pnFuzM2sLVxvvuvUGGvhm2s6bsjzCmTdpmG0Gx6ZG7y7dwUnni2oddp-4Ck4KdygyCz_sd2eb1pu2cNUtuMpN2di73z4En7PpavyC5svn1_FojlJG4hZFROVZpIhIozyRzCQqMlRkecJlKoSRJLF5IgQ3EVNCCYljg3OVpok0lCcxZUPw0N-tvTvH663rfBUiNVWEq4hwyYOK9qrUu6bxNte1L76MP2qC9Yms7snqQFafyep9MLHe1NSnd63_O_2P6wd6vnun</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714781464</pqid></control><display><type>article</type><title>An Extended-FEM Model for CO2 Leakage Through a Naturally Fractured Cap-Rock During Carbon Dioxide Sequestration</title><source>Springer Nature - Complete Springer Journals</source><creator>Khoei, A. R. ; Ehsani, R. ; Hosseini, N.</creator><creatorcontrib>Khoei, A. R. ; Ehsani, R. ; Hosseini, N.</creatorcontrib><description>In this paper, a numerical model is developed for the assessment of carbon dioxide transport through naturally fractured cap-rocks during CO
2
sequestration in underground aquifers. The cap-rock contains two types of fracture with different length scales: micro-cracks (fissures) and macro-cracks (faults). The effect of micro-cracks is incorporated implicitly by modifying the intrinsic permeability tensor of porous matrix, while the macro-cracks are modeled explicitly using the extended finite element method (X-FEM). The fractured porous medium is decomposed into the porous matrix and fracture domain, which are occupied with two immiscible fluid phases, water and CO
2
. The flow inside the matrix domain is governed by the Darcy law, while the flow within the fracture is modeled using the Poiseuille flow. The mass conservation law is fulfilled for each fluid phase at both porous matrix and fracture domain; moreover, the mass exchange between the matrix and fracture is guaranteed through the integral formulation of mass conservation law. Applying the X-FEM technique, the explicit representation of macro-cracks is modeled by enriching the standard finite element approximation space with an enrichment function. Finally, several numerical examples of CO
2
injection into a brine aquifer below a naturally fractured cap-rock are modeled in order to investigate the effects of cracks’ aperture and orientation as well as the temperature of aquifer and the depth of injection on the leakage pattern of the carbon dioxide through the cap-rock.</description><identifier>ISSN: 0169-3913</identifier><identifier>EISSN: 1573-1634</identifier><identifier>DOI: 10.1007/s11242-022-01845-w</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aquifers ; Carbon dioxide ; Carbon sequestration ; Civil Engineering ; Classical and Continuum Physics ; Conservation laws ; Darcys law ; Domains ; Earth and Environmental Science ; Earth Sciences ; Finite element method ; Fluid flow ; Geotechnical Engineering & Applied Earth Sciences ; Hydrogeology ; Hydrology/Water Resources ; Industrial Chemistry/Chemical Engineering ; Laminar flow ; Leakage ; Mathematical analysis ; Mathematical models ; Microcracks ; Numerical models ; Porous media ; Tensors</subject><ispartof>Transport in porous media, 2022-10, Vol.145 (1), p.175-195</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-817fd8715c8fb63ab78a25dfb46c55a61befb554a837575609a0f7ccb6a24b923</citedby><cites>FETCH-LOGICAL-c319t-817fd8715c8fb63ab78a25dfb46c55a61befb554a837575609a0f7ccb6a24b923</cites><orcidid>0000-0002-1812-3004</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11242-022-01845-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11242-022-01845-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Khoei, A. R.</creatorcontrib><creatorcontrib>Ehsani, R.</creatorcontrib><creatorcontrib>Hosseini, N.</creatorcontrib><title>An Extended-FEM Model for CO2 Leakage Through a Naturally Fractured Cap-Rock During Carbon Dioxide Sequestration</title><title>Transport in porous media</title><addtitle>Transp Porous Med</addtitle><description>In this paper, a numerical model is developed for the assessment of carbon dioxide transport through naturally fractured cap-rocks during CO
2
sequestration in underground aquifers. The cap-rock contains two types of fracture with different length scales: micro-cracks (fissures) and macro-cracks (faults). The effect of micro-cracks is incorporated implicitly by modifying the intrinsic permeability tensor of porous matrix, while the macro-cracks are modeled explicitly using the extended finite element method (X-FEM). The fractured porous medium is decomposed into the porous matrix and fracture domain, which are occupied with two immiscible fluid phases, water and CO
2
. The flow inside the matrix domain is governed by the Darcy law, while the flow within the fracture is modeled using the Poiseuille flow. The mass conservation law is fulfilled for each fluid phase at both porous matrix and fracture domain; moreover, the mass exchange between the matrix and fracture is guaranteed through the integral formulation of mass conservation law. Applying the X-FEM technique, the explicit representation of macro-cracks is modeled by enriching the standard finite element approximation space with an enrichment function. Finally, several numerical examples of CO
2
injection into a brine aquifer below a naturally fractured cap-rock are modeled in order to investigate the effects of cracks’ aperture and orientation as well as the temperature of aquifer and the depth of injection on the leakage pattern of the carbon dioxide through the cap-rock.</description><subject>Aquifers</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Civil Engineering</subject><subject>Classical and Continuum Physics</subject><subject>Conservation laws</subject><subject>Darcys law</subject><subject>Domains</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Finite element method</subject><subject>Fluid flow</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Laminar flow</subject><subject>Leakage</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microcracks</subject><subject>Numerical models</subject><subject>Porous media</subject><subject>Tensors</subject><issn>0169-3913</issn><issn>1573-1634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTb47WRZ9QFILZWgrC0ncdq0IQ5OorZ_j9sgsWMxmhnp3rmaA8A9wY8EY_XUEEI5RZiGIhEXaH8BBkQohohk_BIMMJExYjFh1-CmabYYB1vEB6AeVXB6aG2V2QzNpgu4cJktYe48HC8pnFuzM2sLVxvvuvUGGvhm2s6bsjzCmTdpmG0Gx6ZG7y7dwUnni2oddp-4Ck4KdygyCz_sd2eb1pu2cNUtuMpN2di73z4En7PpavyC5svn1_FojlJG4hZFROVZpIhIozyRzCQqMlRkecJlKoSRJLF5IgQ3EVNCCYljg3OVpok0lCcxZUPw0N-tvTvH663rfBUiNVWEq4hwyYOK9qrUu6bxNte1L76MP2qC9Yms7snqQFafyep9MLHe1NSnd63_O_2P6wd6vnun</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Khoei, A. R.</creator><creator>Ehsani, R.</creator><creator>Hosseini, N.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-1812-3004</orcidid></search><sort><creationdate>20221001</creationdate><title>An Extended-FEM Model for CO2 Leakage Through a Naturally Fractured Cap-Rock During Carbon Dioxide Sequestration</title><author>Khoei, A. R. ; Ehsani, R. ; Hosseini, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-817fd8715c8fb63ab78a25dfb46c55a61befb554a837575609a0f7ccb6a24b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aquifers</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Civil Engineering</topic><topic>Classical and Continuum Physics</topic><topic>Conservation laws</topic><topic>Darcys law</topic><topic>Domains</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Finite element method</topic><topic>Fluid flow</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Laminar flow</topic><topic>Leakage</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microcracks</topic><topic>Numerical models</topic><topic>Porous media</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khoei, A. R.</creatorcontrib><creatorcontrib>Ehsani, R.</creatorcontrib><creatorcontrib>Hosseini, N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Transport in porous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khoei, A. R.</au><au>Ehsani, R.</au><au>Hosseini, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Extended-FEM Model for CO2 Leakage Through a Naturally Fractured Cap-Rock During Carbon Dioxide Sequestration</atitle><jtitle>Transport in porous media</jtitle><stitle>Transp Porous Med</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>145</volume><issue>1</issue><spage>175</spage><epage>195</epage><pages>175-195</pages><issn>0169-3913</issn><eissn>1573-1634</eissn><abstract>In this paper, a numerical model is developed for the assessment of carbon dioxide transport through naturally fractured cap-rocks during CO
2
sequestration in underground aquifers. The cap-rock contains two types of fracture with different length scales: micro-cracks (fissures) and macro-cracks (faults). The effect of micro-cracks is incorporated implicitly by modifying the intrinsic permeability tensor of porous matrix, while the macro-cracks are modeled explicitly using the extended finite element method (X-FEM). The fractured porous medium is decomposed into the porous matrix and fracture domain, which are occupied with two immiscible fluid phases, water and CO
2
. The flow inside the matrix domain is governed by the Darcy law, while the flow within the fracture is modeled using the Poiseuille flow. The mass conservation law is fulfilled for each fluid phase at both porous matrix and fracture domain; moreover, the mass exchange between the matrix and fracture is guaranteed through the integral formulation of mass conservation law. Applying the X-FEM technique, the explicit representation of macro-cracks is modeled by enriching the standard finite element approximation space with an enrichment function. Finally, several numerical examples of CO
2
injection into a brine aquifer below a naturally fractured cap-rock are modeled in order to investigate the effects of cracks’ aperture and orientation as well as the temperature of aquifer and the depth of injection on the leakage pattern of the carbon dioxide through the cap-rock.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11242-022-01845-w</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1812-3004</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-3913 |
ispartof | Transport in porous media, 2022-10, Vol.145 (1), p.175-195 |
issn | 0169-3913 1573-1634 |
language | eng |
recordid | cdi_proquest_journals_2714781464 |
source | Springer Nature - Complete Springer Journals |
subjects | Aquifers Carbon dioxide Carbon sequestration Civil Engineering Classical and Continuum Physics Conservation laws Darcys law Domains Earth and Environmental Science Earth Sciences Finite element method Fluid flow Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Industrial Chemistry/Chemical Engineering Laminar flow Leakage Mathematical analysis Mathematical models Microcracks Numerical models Porous media Tensors |
title | An Extended-FEM Model for CO2 Leakage Through a Naturally Fractured Cap-Rock During Carbon Dioxide Sequestration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A29%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Extended-FEM%20Model%20for%20CO2%20Leakage%20Through%20a%20Naturally%20Fractured%20Cap-Rock%20During%20Carbon%20Dioxide%20Sequestration&rft.jtitle=Transport%20in%20porous%20media&rft.au=Khoei,%20A.%20R.&rft.date=2022-10-01&rft.volume=145&rft.issue=1&rft.spage=175&rft.epage=195&rft.pages=175-195&rft.issn=0169-3913&rft.eissn=1573-1634&rft_id=info:doi/10.1007/s11242-022-01845-w&rft_dat=%3Cproquest_cross%3E2714781464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714781464&rft_id=info:pmid/&rfr_iscdi=true |