High-dimensional test for alpha in linear factor pricing models with sparse alternatives

We consider the problem of testing for the presence of alpha in Linear Factor Pricing Models. We propose a novel test of the max-of-squares type, which is designed to deal with the high dimensionality of the securities and the sparse alternatives. We rigorously show that the proposed test has attrac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2022-07, Vol.229 (1), p.152-175
Hauptverfasser: Feng, Long, Lan, Wei, Liu, Binghui, Ma, Yanyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 175
container_issue 1
container_start_page 152
container_title Journal of econometrics
container_volume 229
creator Feng, Long
Lan, Wei
Liu, Binghui
Ma, Yanyuan
description We consider the problem of testing for the presence of alpha in Linear Factor Pricing Models. We propose a novel test of the max-of-squares type, which is designed to deal with the high dimensionality of the securities and the sparse alternatives. We rigorously show that the proposed test has attractive theoretical properties and demonstrate its superior performance via Monte Carlo experiments. These results are established when the number of securities is larger than the time dimension of the return series, and the alternative hypothesis is sparse, i.e. the alpha vector is sparse. As a general alternative, we suggest to combine the max-of-squares type test and a sum-of-squares type test, to benefit from the power advantages of both tests. We apply the two proposed tests to the monthly returns on securities in the Chinese and the U.S. stock markets, respectively under the Fama–French three-factor model, and confirm the usefulness of the proposed tests in detecting the presence of alpha.
doi_str_mv 10.1016/j.jeconom.2021.07.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2714746385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407621001962</els_id><sourcerecordid>2714746385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-448b7ccfd39449bf0d374532e59516e8cf2295f4ea0e44036dfc7c44fd4a0fb33</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKc_QQj43HrTpE37JDLUCQNfFHwLWXqzpbTNTLqJ_96M-e7Thcs5h3M-Qm4Z5AxYdd_lHRo_-iEvoGA5yBwYOyMzVssiq-qmPCcz4CAyAbK6JFcxdgBQiprPyOfSbbZZ6wYco_Oj7umEcaLWB6r73VZTN9LejagDtdpM6b0LzrhxQwffYh_pt5u2NO50iJgcE4ZRT-6A8ZpcWN1HvPm7c_Lx_PS-WGart5fXxeMqM1zClAlRr6UxtuWNEM3aQsulKHmBZVOyCmtji6IprUANKATwqrVGGiFsKzTYNedzcnfK3QX_tU_dVef3qUQfVSGZkKLidZlU5Ullgo8xoFVpxqDDj2KgjhBVp_4gqiNEBVIliMn3cPKlqXhwGFQ0DkeDrQtoJtV690_CL8W-fnc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714746385</pqid></control><display><type>article</type><title>High-dimensional test for alpha in linear factor pricing models with sparse alternatives</title><source>Access via ScienceDirect (Elsevier)</source><creator>Feng, Long ; Lan, Wei ; Liu, Binghui ; Ma, Yanyuan</creator><creatorcontrib>Feng, Long ; Lan, Wei ; Liu, Binghui ; Ma, Yanyuan</creatorcontrib><description>We consider the problem of testing for the presence of alpha in Linear Factor Pricing Models. We propose a novel test of the max-of-squares type, which is designed to deal with the high dimensionality of the securities and the sparse alternatives. We rigorously show that the proposed test has attractive theoretical properties and demonstrate its superior performance via Monte Carlo experiments. These results are established when the number of securities is larger than the time dimension of the return series, and the alternative hypothesis is sparse, i.e. the alpha vector is sparse. As a general alternative, we suggest to combine the max-of-squares type test and a sum-of-squares type test, to benefit from the power advantages of both tests. We apply the two proposed tests to the monthly returns on securities in the Chinese and the U.S. stock markets, respectively under the Fama–French three-factor model, and confirm the usefulness of the proposed tests in detecting the presence of alpha.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2021.07.011</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Alternatives ; Discriminant analysis ; High dimensionality ; Linear factor pricing model ; Monte Carlo simulation ; Return on assets ; Securities in stock markets ; Securities markets ; Sparse alternatives ; Tests for alpha ; Usefulness</subject><ispartof>Journal of econometrics, 2022-07, Vol.229 (1), p.152-175</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-448b7ccfd39449bf0d374532e59516e8cf2295f4ea0e44036dfc7c44fd4a0fb33</citedby><cites>FETCH-LOGICAL-c370t-448b7ccfd39449bf0d374532e59516e8cf2295f4ea0e44036dfc7c44fd4a0fb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2021.07.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Feng, Long</creatorcontrib><creatorcontrib>Lan, Wei</creatorcontrib><creatorcontrib>Liu, Binghui</creatorcontrib><creatorcontrib>Ma, Yanyuan</creatorcontrib><title>High-dimensional test for alpha in linear factor pricing models with sparse alternatives</title><title>Journal of econometrics</title><description>We consider the problem of testing for the presence of alpha in Linear Factor Pricing Models. We propose a novel test of the max-of-squares type, which is designed to deal with the high dimensionality of the securities and the sparse alternatives. We rigorously show that the proposed test has attractive theoretical properties and demonstrate its superior performance via Monte Carlo experiments. These results are established when the number of securities is larger than the time dimension of the return series, and the alternative hypothesis is sparse, i.e. the alpha vector is sparse. As a general alternative, we suggest to combine the max-of-squares type test and a sum-of-squares type test, to benefit from the power advantages of both tests. We apply the two proposed tests to the monthly returns on securities in the Chinese and the U.S. stock markets, respectively under the Fama–French three-factor model, and confirm the usefulness of the proposed tests in detecting the presence of alpha.</description><subject>Alternatives</subject><subject>Discriminant analysis</subject><subject>High dimensionality</subject><subject>Linear factor pricing model</subject><subject>Monte Carlo simulation</subject><subject>Return on assets</subject><subject>Securities in stock markets</subject><subject>Securities markets</subject><subject>Sparse alternatives</subject><subject>Tests for alpha</subject><subject>Usefulness</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKc_QQj43HrTpE37JDLUCQNfFHwLWXqzpbTNTLqJ_96M-e7Thcs5h3M-Qm4Z5AxYdd_lHRo_-iEvoGA5yBwYOyMzVssiq-qmPCcz4CAyAbK6JFcxdgBQiprPyOfSbbZZ6wYco_Oj7umEcaLWB6r73VZTN9LejagDtdpM6b0LzrhxQwffYh_pt5u2NO50iJgcE4ZRT-6A8ZpcWN1HvPm7c_Lx_PS-WGart5fXxeMqM1zClAlRr6UxtuWNEM3aQsulKHmBZVOyCmtji6IprUANKATwqrVGGiFsKzTYNedzcnfK3QX_tU_dVef3qUQfVSGZkKLidZlU5Ullgo8xoFVpxqDDj2KgjhBVp_4gqiNEBVIliMn3cPKlqXhwGFQ0DkeDrQtoJtV690_CL8W-fnc</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Feng, Long</creator><creator>Lan, Wei</creator><creator>Liu, Binghui</creator><creator>Ma, Yanyuan</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>202207</creationdate><title>High-dimensional test for alpha in linear factor pricing models with sparse alternatives</title><author>Feng, Long ; Lan, Wei ; Liu, Binghui ; Ma, Yanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-448b7ccfd39449bf0d374532e59516e8cf2295f4ea0e44036dfc7c44fd4a0fb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alternatives</topic><topic>Discriminant analysis</topic><topic>High dimensionality</topic><topic>Linear factor pricing model</topic><topic>Monte Carlo simulation</topic><topic>Return on assets</topic><topic>Securities in stock markets</topic><topic>Securities markets</topic><topic>Sparse alternatives</topic><topic>Tests for alpha</topic><topic>Usefulness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Long</creatorcontrib><creatorcontrib>Lan, Wei</creatorcontrib><creatorcontrib>Liu, Binghui</creatorcontrib><creatorcontrib>Ma, Yanyuan</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Long</au><au>Lan, Wei</au><au>Liu, Binghui</au><au>Ma, Yanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-dimensional test for alpha in linear factor pricing models with sparse alternatives</atitle><jtitle>Journal of econometrics</jtitle><date>2022-07</date><risdate>2022</risdate><volume>229</volume><issue>1</issue><spage>152</spage><epage>175</epage><pages>152-175</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><abstract>We consider the problem of testing for the presence of alpha in Linear Factor Pricing Models. We propose a novel test of the max-of-squares type, which is designed to deal with the high dimensionality of the securities and the sparse alternatives. We rigorously show that the proposed test has attractive theoretical properties and demonstrate its superior performance via Monte Carlo experiments. These results are established when the number of securities is larger than the time dimension of the return series, and the alternative hypothesis is sparse, i.e. the alpha vector is sparse. As a general alternative, we suggest to combine the max-of-squares type test and a sum-of-squares type test, to benefit from the power advantages of both tests. We apply the two proposed tests to the monthly returns on securities in the Chinese and the U.S. stock markets, respectively under the Fama–French three-factor model, and confirm the usefulness of the proposed tests in detecting the presence of alpha.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2021.07.011</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2022-07, Vol.229 (1), p.152-175
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_journals_2714746385
source Access via ScienceDirect (Elsevier)
subjects Alternatives
Discriminant analysis
High dimensionality
Linear factor pricing model
Monte Carlo simulation
Return on assets
Securities in stock markets
Securities markets
Sparse alternatives
Tests for alpha
Usefulness
title High-dimensional test for alpha in linear factor pricing models with sparse alternatives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-dimensional%20test%20for%20alpha%20in%20linear%20factor%20pricing%20models%20with%20sparse%20alternatives&rft.jtitle=Journal%20of%20econometrics&rft.au=Feng,%20Long&rft.date=2022-07&rft.volume=229&rft.issue=1&rft.spage=152&rft.epage=175&rft.pages=152-175&rft.issn=0304-4076&rft.eissn=1872-6895&rft_id=info:doi/10.1016/j.jeconom.2021.07.011&rft_dat=%3Cproquest_cross%3E2714746385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714746385&rft_id=info:pmid/&rft_els_id=S0304407621001962&rfr_iscdi=true