On the Poisson Equation on a Surface with a boundary condition in co-normal direction
This paper considers the existence of weak and strong solutions to the Poisson equation on a surface with a boundary condition in co-normal direction. We apply the Lax-Milgram theorem and some properties of \(H^1\)-functions to show the existence of a unique weak solution to the surface Poisson equa...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Koba, Hajime Wakasugi, Yuki |
description | This paper considers the existence of weak and strong solutions to the Poisson equation on a surface with a boundary condition in co-normal direction. We apply the Lax-Milgram theorem and some properties of \(H^1\)-functions to show the existence of a unique weak solution to the surface Poisson equation when the exterior force belongs to \(L_0^p\)-space, where \(H^1\)- and \(L_0^p\)- functions are the ones whose value of the integral over the surface equal to zero. Moreover, we prove that the weak solution is a strong \(L^p\)-solution to the system. As an application, we study the solvability of \({\rm{div}_\Gamma } V = F\). The key idea of constructing a strong \(L^p\)-solution to the surface Poisson equation with a boundary condition in co-normal direction is to make use of solutions to the surface Poisson equation with a Dirichlet boundary condition. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2714531393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714531393</sourcerecordid><originalsourceid>FETCH-proquest_journals_27145313933</originalsourceid><addsrcrecordid>eNqNit0KgkAUhJcgSMp3ONC1oHs06zqM7gqq69h0xRU7m_tD9PZt0QMEAzPfzExYxBGzZJ1zPmOxtX2apnxV8qLAiF0OBK6TcNTKWk1QjV44FUKQgJM3raglPJXrAt60p0aYF9SaGvW9KQqQkDZ3MUCjjKw_9YJNWzFYGf98zpa76rzdJw-jRy-tu_baGwrTlZdZXmCGG8T_Xm92skBk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714531393</pqid></control><display><type>article</type><title>On the Poisson Equation on a Surface with a boundary condition in co-normal direction</title><source>Free E- Journals</source><creator>Koba, Hajime ; Wakasugi, Yuki</creator><creatorcontrib>Koba, Hajime ; Wakasugi, Yuki</creatorcontrib><description>This paper considers the existence of weak and strong solutions to the Poisson equation on a surface with a boundary condition in co-normal direction. We apply the Lax-Milgram theorem and some properties of \(H^1\)-functions to show the existence of a unique weak solution to the surface Poisson equation when the exterior force belongs to \(L_0^p\)-space, where \(H^1\)- and \(L_0^p\)- functions are the ones whose value of the integral over the surface equal to zero. Moreover, we prove that the weak solution is a strong \(L^p\)-solution to the system. As an application, we study the solvability of \({\rm{div}_\Gamma } V = F\). The key idea of constructing a strong \(L^p\)-solution to the surface Poisson equation with a boundary condition in co-normal direction is to make use of solutions to the surface Poisson equation with a Dirichlet boundary condition.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary conditions ; Dirichlet problem ; Existence theorems ; Poisson equation</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Koba, Hajime</creatorcontrib><creatorcontrib>Wakasugi, Yuki</creatorcontrib><title>On the Poisson Equation on a Surface with a boundary condition in co-normal direction</title><title>arXiv.org</title><description>This paper considers the existence of weak and strong solutions to the Poisson equation on a surface with a boundary condition in co-normal direction. We apply the Lax-Milgram theorem and some properties of \(H^1\)-functions to show the existence of a unique weak solution to the surface Poisson equation when the exterior force belongs to \(L_0^p\)-space, where \(H^1\)- and \(L_0^p\)- functions are the ones whose value of the integral over the surface equal to zero. Moreover, we prove that the weak solution is a strong \(L^p\)-solution to the system. As an application, we study the solvability of \({\rm{div}_\Gamma } V = F\). The key idea of constructing a strong \(L^p\)-solution to the surface Poisson equation with a boundary condition in co-normal direction is to make use of solutions to the surface Poisson equation with a Dirichlet boundary condition.</description><subject>Boundary conditions</subject><subject>Dirichlet problem</subject><subject>Existence theorems</subject><subject>Poisson equation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNit0KgkAUhJcgSMp3ONC1oHs06zqM7gqq69h0xRU7m_tD9PZt0QMEAzPfzExYxBGzZJ1zPmOxtX2apnxV8qLAiF0OBK6TcNTKWk1QjV44FUKQgJM3raglPJXrAt60p0aYF9SaGvW9KQqQkDZ3MUCjjKw_9YJNWzFYGf98zpa76rzdJw-jRy-tu_baGwrTlZdZXmCGG8T_Xm92skBk</recordid><startdate>20220914</startdate><enddate>20220914</enddate><creator>Koba, Hajime</creator><creator>Wakasugi, Yuki</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220914</creationdate><title>On the Poisson Equation on a Surface with a boundary condition in co-normal direction</title><author>Koba, Hajime ; Wakasugi, Yuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27145313933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Boundary conditions</topic><topic>Dirichlet problem</topic><topic>Existence theorems</topic><topic>Poisson equation</topic><toplevel>online_resources</toplevel><creatorcontrib>Koba, Hajime</creatorcontrib><creatorcontrib>Wakasugi, Yuki</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koba, Hajime</au><au>Wakasugi, Yuki</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the Poisson Equation on a Surface with a boundary condition in co-normal direction</atitle><jtitle>arXiv.org</jtitle><date>2022-09-14</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>This paper considers the existence of weak and strong solutions to the Poisson equation on a surface with a boundary condition in co-normal direction. We apply the Lax-Milgram theorem and some properties of \(H^1\)-functions to show the existence of a unique weak solution to the surface Poisson equation when the exterior force belongs to \(L_0^p\)-space, where \(H^1\)- and \(L_0^p\)- functions are the ones whose value of the integral over the surface equal to zero. Moreover, we prove that the weak solution is a strong \(L^p\)-solution to the system. As an application, we study the solvability of \({\rm{div}_\Gamma } V = F\). The key idea of constructing a strong \(L^p\)-solution to the surface Poisson equation with a boundary condition in co-normal direction is to make use of solutions to the surface Poisson equation with a Dirichlet boundary condition.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2714531393 |
source | Free E- Journals |
subjects | Boundary conditions Dirichlet problem Existence theorems Poisson equation |
title | On the Poisson Equation on a Surface with a boundary condition in co-normal direction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20Poisson%20Equation%20on%20a%20Surface%20with%20a%20boundary%20condition%20in%20co-normal%20direction&rft.jtitle=arXiv.org&rft.au=Koba,%20Hajime&rft.date=2022-09-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2714531393%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714531393&rft_id=info:pmid/&rfr_iscdi=true |