Impact of strain engineering and Sn content on GeSn heterostructured nanomaterials for nanoelectronics and photonic devices

Heterostructures based on the GeSn nanocompound have high impact on integrated photonics devices. The promising feature of GeSn nanostructures is its direct bandgap transition that is a result of Sn incorporation in the Ge networks, forming a strained structure. Herein, we demonstrate a deep survey...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2022-08, Vol.12 (38), p.24518-24554
Hauptverfasser: Nawwar, Mohamed A, Abo Ghazala, Magdy S, Sharaf El-Deen, Lobna M, Kashyout, Abd El-hady B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24554
container_issue 38
container_start_page 24518
container_title RSC advances
container_volume 12
creator Nawwar, Mohamed A
Abo Ghazala, Magdy S
Sharaf El-Deen, Lobna M
Kashyout, Abd El-hady B
description Heterostructures based on the GeSn nanocompound have high impact on integrated photonics devices. The promising feature of GeSn nanostructures is its direct bandgap transition that is a result of Sn incorporation in the Ge networks, forming a strained structure. Herein, we demonstrate a deep survey of the strain-controlling mechanisms in GeSn nanomaterials with different methodologies. Using either layer configurations, Sn incorporation, or by external stressors, the emission of different photonic and nanoelectronic applications is controlled. We find that strain engineering modulates the bandgap of GeSn active media to control the region of emission for light emitting diodes, lasing applications, and spectral response for photodetection applications within the mid-IR region of the spectrum and enhances the performance of MOSFETs. This gives GeSn nanocompounds the chance to contribute greatly to IoT physical devices and compete with unstable perovskite materials since GeSn materials can achieve a stable and more reliable performance. Heterostructures based on the GeSn nanocompound have high impact on integrated photonics devices.
doi_str_mv 10.1039/d2ra04181b
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2714301801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714301801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-d42a02bcafff192ec382e182d9b231b05766baa0582ca9101e08b1afe10a3a7b3</originalsourceid><addsrcrecordid>eNpVkctLAzEQxhdRUNSLdyHgTahmku129yLUVxUKgo9zmM3OtpE2qUm2IP7zxrZUncs88uNLJl-WnQC_AC6ry0Z45DmUUO9kB4LnRU_wotr9U-9nxyG88xRFH0QBB9nX43yBOjLXshA9GsvITowl8sZOGNqGvVimnY1kE2TZiFI_pUjeJb7TsfPUMIvWzTENDc4Ca51fTWhGOnpnjQ4rpcXUxZ-ONbQ0msJRttcmno43-TB7u797vXnojZ9GjzfDcU9L2Y-9JhfIRa2xbVuoBGlZCoJSNFUtJNS8PyiKGpH3S6GxAg7EyxqwJeAocVDLw-xqrbvo6jk1Oq3icaYW3szRfyqHRv0_sWaqJm6pqlwUeV4mgbONgHcfHYWo3l3nbXqzEgPIJYeSQ6LO15ROfxM8tdsbgKsfg9SteB6uDLpO8Oka9kFvuV8D5Tc9dJDR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714301801</pqid></control><display><type>article</type><title>Impact of strain engineering and Sn content on GeSn heterostructured nanomaterials for nanoelectronics and photonic devices</title><source>Electronic Journals Library</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Nawwar, Mohamed A ; Abo Ghazala, Magdy S ; Sharaf El-Deen, Lobna M ; Kashyout, Abd El-hady B</creator><creatorcontrib>Nawwar, Mohamed A ; Abo Ghazala, Magdy S ; Sharaf El-Deen, Lobna M ; Kashyout, Abd El-hady B</creatorcontrib><description>Heterostructures based on the GeSn nanocompound have high impact on integrated photonics devices. The promising feature of GeSn nanostructures is its direct bandgap transition that is a result of Sn incorporation in the Ge networks, forming a strained structure. Herein, we demonstrate a deep survey of the strain-controlling mechanisms in GeSn nanomaterials with different methodologies. Using either layer configurations, Sn incorporation, or by external stressors, the emission of different photonic and nanoelectronic applications is controlled. We find that strain engineering modulates the bandgap of GeSn active media to control the region of emission for light emitting diodes, lasing applications, and spectral response for photodetection applications within the mid-IR region of the spectrum and enhances the performance of MOSFETs. This gives GeSn nanocompounds the chance to contribute greatly to IoT physical devices and compete with unstable perovskite materials since GeSn materials can achieve a stable and more reliable performance. Heterostructures based on the GeSn nanocompound have high impact on integrated photonics devices.</description><identifier>ISSN: 2046-2069</identifier><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d2ra04181b</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Active control ; Chemistry ; Emissions control ; Energy gap ; Germanium ; Heterostructures ; Intermetallic compounds ; Light emitting diodes ; MOSFETs ; Nanoelectronics ; Nanomaterials ; Perovskites ; Photonics ; Spectral emittance ; Spectral sensitivity ; Tin</subject><ispartof>RSC advances, 2022-08, Vol.12 (38), p.24518-24554</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><rights>This journal is © The Royal Society of Chemistry 2022 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-d42a02bcafff192ec382e182d9b231b05766baa0582ca9101e08b1afe10a3a7b3</citedby><cites>FETCH-LOGICAL-c335t-d42a02bcafff192ec382e182d9b231b05766baa0582ca9101e08b1afe10a3a7b3</cites><orcidid>0000-0002-2837-8115</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426448/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426448/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Nawwar, Mohamed A</creatorcontrib><creatorcontrib>Abo Ghazala, Magdy S</creatorcontrib><creatorcontrib>Sharaf El-Deen, Lobna M</creatorcontrib><creatorcontrib>Kashyout, Abd El-hady B</creatorcontrib><title>Impact of strain engineering and Sn content on GeSn heterostructured nanomaterials for nanoelectronics and photonic devices</title><title>RSC advances</title><description>Heterostructures based on the GeSn nanocompound have high impact on integrated photonics devices. The promising feature of GeSn nanostructures is its direct bandgap transition that is a result of Sn incorporation in the Ge networks, forming a strained structure. Herein, we demonstrate a deep survey of the strain-controlling mechanisms in GeSn nanomaterials with different methodologies. Using either layer configurations, Sn incorporation, or by external stressors, the emission of different photonic and nanoelectronic applications is controlled. We find that strain engineering modulates the bandgap of GeSn active media to control the region of emission for light emitting diodes, lasing applications, and spectral response for photodetection applications within the mid-IR region of the spectrum and enhances the performance of MOSFETs. This gives GeSn nanocompounds the chance to contribute greatly to IoT physical devices and compete with unstable perovskite materials since GeSn materials can achieve a stable and more reliable performance. Heterostructures based on the GeSn nanocompound have high impact on integrated photonics devices.</description><subject>Active control</subject><subject>Chemistry</subject><subject>Emissions control</subject><subject>Energy gap</subject><subject>Germanium</subject><subject>Heterostructures</subject><subject>Intermetallic compounds</subject><subject>Light emitting diodes</subject><subject>MOSFETs</subject><subject>Nanoelectronics</subject><subject>Nanomaterials</subject><subject>Perovskites</subject><subject>Photonics</subject><subject>Spectral emittance</subject><subject>Spectral sensitivity</subject><subject>Tin</subject><issn>2046-2069</issn><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVkctLAzEQxhdRUNSLdyHgTahmku129yLUVxUKgo9zmM3OtpE2qUm2IP7zxrZUncs88uNLJl-WnQC_AC6ry0Z45DmUUO9kB4LnRU_wotr9U-9nxyG88xRFH0QBB9nX43yBOjLXshA9GsvITowl8sZOGNqGvVimnY1kE2TZiFI_pUjeJb7TsfPUMIvWzTENDc4Ca51fTWhGOnpnjQ4rpcXUxZ-ONbQ0msJRttcmno43-TB7u797vXnojZ9GjzfDcU9L2Y-9JhfIRa2xbVuoBGlZCoJSNFUtJNS8PyiKGpH3S6GxAg7EyxqwJeAocVDLw-xqrbvo6jk1Oq3icaYW3szRfyqHRv0_sWaqJm6pqlwUeV4mgbONgHcfHYWo3l3nbXqzEgPIJYeSQ6LO15ROfxM8tdsbgKsfg9SteB6uDLpO8Oka9kFvuV8D5Tc9dJDR</recordid><startdate>20220830</startdate><enddate>20220830</enddate><creator>Nawwar, Mohamed A</creator><creator>Abo Ghazala, Magdy S</creator><creator>Sharaf El-Deen, Lobna M</creator><creator>Kashyout, Abd El-hady B</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2837-8115</orcidid></search><sort><creationdate>20220830</creationdate><title>Impact of strain engineering and Sn content on GeSn heterostructured nanomaterials for nanoelectronics and photonic devices</title><author>Nawwar, Mohamed A ; Abo Ghazala, Magdy S ; Sharaf El-Deen, Lobna M ; Kashyout, Abd El-hady B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-d42a02bcafff192ec382e182d9b231b05766baa0582ca9101e08b1afe10a3a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Active control</topic><topic>Chemistry</topic><topic>Emissions control</topic><topic>Energy gap</topic><topic>Germanium</topic><topic>Heterostructures</topic><topic>Intermetallic compounds</topic><topic>Light emitting diodes</topic><topic>MOSFETs</topic><topic>Nanoelectronics</topic><topic>Nanomaterials</topic><topic>Perovskites</topic><topic>Photonics</topic><topic>Spectral emittance</topic><topic>Spectral sensitivity</topic><topic>Tin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nawwar, Mohamed A</creatorcontrib><creatorcontrib>Abo Ghazala, Magdy S</creatorcontrib><creatorcontrib>Sharaf El-Deen, Lobna M</creatorcontrib><creatorcontrib>Kashyout, Abd El-hady B</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nawwar, Mohamed A</au><au>Abo Ghazala, Magdy S</au><au>Sharaf El-Deen, Lobna M</au><au>Kashyout, Abd El-hady B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impact of strain engineering and Sn content on GeSn heterostructured nanomaterials for nanoelectronics and photonic devices</atitle><jtitle>RSC advances</jtitle><date>2022-08-30</date><risdate>2022</risdate><volume>12</volume><issue>38</issue><spage>24518</spage><epage>24554</epage><pages>24518-24554</pages><issn>2046-2069</issn><eissn>2046-2069</eissn><abstract>Heterostructures based on the GeSn nanocompound have high impact on integrated photonics devices. The promising feature of GeSn nanostructures is its direct bandgap transition that is a result of Sn incorporation in the Ge networks, forming a strained structure. Herein, we demonstrate a deep survey of the strain-controlling mechanisms in GeSn nanomaterials with different methodologies. Using either layer configurations, Sn incorporation, or by external stressors, the emission of different photonic and nanoelectronic applications is controlled. We find that strain engineering modulates the bandgap of GeSn active media to control the region of emission for light emitting diodes, lasing applications, and spectral response for photodetection applications within the mid-IR region of the spectrum and enhances the performance of MOSFETs. This gives GeSn nanocompounds the chance to contribute greatly to IoT physical devices and compete with unstable perovskite materials since GeSn materials can achieve a stable and more reliable performance. Heterostructures based on the GeSn nanocompound have high impact on integrated photonics devices.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ra04181b</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0002-2837-8115</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-2069
ispartof RSC advances, 2022-08, Vol.12 (38), p.24518-24554
issn 2046-2069
2046-2069
language eng
recordid cdi_proquest_journals_2714301801
source Electronic Journals Library; DOAJ Directory of Open Access Journals; PubMed Central; PubMed Central Open Access
subjects Active control
Chemistry
Emissions control
Energy gap
Germanium
Heterostructures
Intermetallic compounds
Light emitting diodes
MOSFETs
Nanoelectronics
Nanomaterials
Perovskites
Photonics
Spectral emittance
Spectral sensitivity
Tin
title Impact of strain engineering and Sn content on GeSn heterostructured nanomaterials for nanoelectronics and photonic devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A43%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impact%20of%20strain%20engineering%20and%20Sn%20content%20on%20GeSn%20heterostructured%20nanomaterials%20for%20nanoelectronics%20and%20photonic%20devices&rft.jtitle=RSC%20advances&rft.au=Nawwar,%20Mohamed%20A&rft.date=2022-08-30&rft.volume=12&rft.issue=38&rft.spage=24518&rft.epage=24554&rft.pages=24518-24554&rft.issn=2046-2069&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d2ra04181b&rft_dat=%3Cproquest_rsc_p%3E2714301801%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714301801&rft_id=info:pmid/&rfr_iscdi=true