Tackling Disorder in γ‐Ga2O3
Ga2O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ‐Ga2O3 presents a particu...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2022-09, Vol.34 (37), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 37 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 34 |
creator | Ratcliff, Laura E. Oshima, Takayoshi Nippert, Felix Janzen, Benjamin M. Kluth, Elias Goldhahn, Rüdiger Feneberg, Martin Mazzolini, Piero Bierwagen, Oliver Wouters, Charlotte Nofal, Musbah Albrecht, Martin Swallow, Jack E. N. Jones, Leanne A. H. Thakur, Pardeep K. Lee, Tien‐Lin Kalha, Curran Schlueter, Christoph Veal, Tim D. Varley, Joel B. Wagner, Markus R. Regoutz, Anna |
description | Ga2O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ‐Ga2O3 presents a particular challenge across synthesis, characterization, and theory due to its inherent disorder and resulting complex structure–electronic‐structure relationship. Here, density functional theory is used in combination with a machine‐learning approach to screen nearly one million potential structures, thereby developing a robust atomistic model of the γ‐phase. Theoretical results are compared with surface and bulk sensitive soft and hard X‐ray photoelectron spectroscopy, X‐ray absorption spectroscopy, spectroscopic ellipsometry, and photoluminescence excitation spectroscopy experiments representative of the occupied and unoccupied states of γ‐Ga2O3. The first onset of strong absorption at room temperature is found at 5.1 eV from spectroscopic ellipsometry, which agrees well with the excitation maximum at 5.17 eV obtained by photoluminescence excitation spectroscopy, where the latter shifts to 5.33 eV at 5 K. This work presents a leap forward in the treatment of complex, disordered oxides and is a crucial step toward exploring how their electronic structure can be understood in terms of local coordination and overall structure.
Gallium oxide (Ga2O3) is attracting increasing attention in applications such as power electronics and photodetectors due to its rich structural space and resulting electronic structure. This work explores the influence of structural disorder on a range of crucial material parameters of γ‐phase Ga2O3 by combining density functional theory and machine learning with a range of experimental probes. |
doi_str_mv | 10.1002/adma.202204217 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2714251933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714251933</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3007-a63f4231fc63fb755da681fe9d4632432d8105c859acbd2de4b60195f8b3000c3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQRi0EEqGwZUsF65Txb-xl1EJBKuqmrC3HdsClTUqcCnXHEbgL9-AQnIRUQV3NjPRmNN9D6BLDCAOQW-PWZkSAEGAEZ0cowZzglIHixygBRXmqBJOn6CzGJQAoASJBVwtj31ahehlOQqwb55thqIY_37-fX1ND5vQcnZRmFf3Ffx2g5_u7xfghnc2nj-N8ltYUIEuNoCUjFJe2a4qMc2eExKVXjglKGCVOYuBWcmVs4YjzrBCAFS9l0e2DpQN03d-tYxt0tKH19tXWVeVtq7GUXS7ZQTc9tGnq962PrV7W26bq_tIkw4xwrCjtKNVTH2Hld3rThLVpdhqD3mvSe036oEnnk6f8MNE_Rs9bkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714251933</pqid></control><display><type>article</type><title>Tackling Disorder in γ‐Ga2O3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ratcliff, Laura E. ; Oshima, Takayoshi ; Nippert, Felix ; Janzen, Benjamin M. ; Kluth, Elias ; Goldhahn, Rüdiger ; Feneberg, Martin ; Mazzolini, Piero ; Bierwagen, Oliver ; Wouters, Charlotte ; Nofal, Musbah ; Albrecht, Martin ; Swallow, Jack E. N. ; Jones, Leanne A. H. ; Thakur, Pardeep K. ; Lee, Tien‐Lin ; Kalha, Curran ; Schlueter, Christoph ; Veal, Tim D. ; Varley, Joel B. ; Wagner, Markus R. ; Regoutz, Anna</creator><creatorcontrib>Ratcliff, Laura E. ; Oshima, Takayoshi ; Nippert, Felix ; Janzen, Benjamin M. ; Kluth, Elias ; Goldhahn, Rüdiger ; Feneberg, Martin ; Mazzolini, Piero ; Bierwagen, Oliver ; Wouters, Charlotte ; Nofal, Musbah ; Albrecht, Martin ; Swallow, Jack E. N. ; Jones, Leanne A. H. ; Thakur, Pardeep K. ; Lee, Tien‐Lin ; Kalha, Curran ; Schlueter, Christoph ; Veal, Tim D. ; Varley, Joel B. ; Wagner, Markus R. ; Regoutz, Anna ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Ga2O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ‐Ga2O3 presents a particular challenge across synthesis, characterization, and theory due to its inherent disorder and resulting complex structure–electronic‐structure relationship. Here, density functional theory is used in combination with a machine‐learning approach to screen nearly one million potential structures, thereby developing a robust atomistic model of the γ‐phase. Theoretical results are compared with surface and bulk sensitive soft and hard X‐ray photoelectron spectroscopy, X‐ray absorption spectroscopy, spectroscopic ellipsometry, and photoluminescence excitation spectroscopy experiments representative of the occupied and unoccupied states of γ‐Ga2O3. The first onset of strong absorption at room temperature is found at 5.1 eV from spectroscopic ellipsometry, which agrees well with the excitation maximum at 5.17 eV obtained by photoluminescence excitation spectroscopy, where the latter shifts to 5.33 eV at 5 K. This work presents a leap forward in the treatment of complex, disordered oxides and is a crucial step toward exploring how their electronic structure can be understood in terms of local coordination and overall structure.
Gallium oxide (Ga2O3) is attracting increasing attention in applications such as power electronics and photodetectors due to its rich structural space and resulting electronic structure. This work explores the influence of structural disorder on a range of crucial material parameters of γ‐phase Ga2O3 by combining density functional theory and machine learning with a range of experimental probes.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202204217</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Density functional theory ; Electronic structure ; Excitation spectra ; gallium oxide ; Gallium oxides ; Machine learning ; MATERIALS SCIENCE ; Photoelectrons ; Photoluminescence ; photoluminescence excitation spectroscopy ; Room temperature ; semiconductors ; Spectroellipsometry ; Spectroscopy ; Spectrum analysis ; structural disorder ; ultrawide bandgap</subject><ispartof>Advanced materials (Weinheim), 2022-09, Vol.34 (37), p.n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0610-5626 ; 0000-0002-7367-5629 ; 0000-0002-9760-5465 ; 0000-0002-3387-6880 ; 0000-0001-9110-6369 ; 0000-0002-3747-3763 ; 0000-0002-8903-4367 ; 0000-0003-2092-5265 ; 0000-0002-4746-5660 ; 0000-0002-9599-0531 ; 0000-0002-6091-6761 ; 0000-0001-8550-9735 ; 0000-0002-5384-5248 ; 0000-0003-4253-0061 ; 0000000185509735 ; 0000000320925265 ; 0000000297605465 ; 0000000342530061 ; 0000000289034367 ; 0000000295990531 ; 0000000273675629 ; 0000000260916761 ; 0000000191106369 ; 0000000237473763 ; 0000000247465660 ; 0000000253845248 ; 0000000233876880 ; 0000000206105626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202204217$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202204217$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1882028$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ratcliff, Laura E.</creatorcontrib><creatorcontrib>Oshima, Takayoshi</creatorcontrib><creatorcontrib>Nippert, Felix</creatorcontrib><creatorcontrib>Janzen, Benjamin M.</creatorcontrib><creatorcontrib>Kluth, Elias</creatorcontrib><creatorcontrib>Goldhahn, Rüdiger</creatorcontrib><creatorcontrib>Feneberg, Martin</creatorcontrib><creatorcontrib>Mazzolini, Piero</creatorcontrib><creatorcontrib>Bierwagen, Oliver</creatorcontrib><creatorcontrib>Wouters, Charlotte</creatorcontrib><creatorcontrib>Nofal, Musbah</creatorcontrib><creatorcontrib>Albrecht, Martin</creatorcontrib><creatorcontrib>Swallow, Jack E. N.</creatorcontrib><creatorcontrib>Jones, Leanne A. H.</creatorcontrib><creatorcontrib>Thakur, Pardeep K.</creatorcontrib><creatorcontrib>Lee, Tien‐Lin</creatorcontrib><creatorcontrib>Kalha, Curran</creatorcontrib><creatorcontrib>Schlueter, Christoph</creatorcontrib><creatorcontrib>Veal, Tim D.</creatorcontrib><creatorcontrib>Varley, Joel B.</creatorcontrib><creatorcontrib>Wagner, Markus R.</creatorcontrib><creatorcontrib>Regoutz, Anna</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Tackling Disorder in γ‐Ga2O3</title><title>Advanced materials (Weinheim)</title><description>Ga2O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ‐Ga2O3 presents a particular challenge across synthesis, characterization, and theory due to its inherent disorder and resulting complex structure–electronic‐structure relationship. Here, density functional theory is used in combination with a machine‐learning approach to screen nearly one million potential structures, thereby developing a robust atomistic model of the γ‐phase. Theoretical results are compared with surface and bulk sensitive soft and hard X‐ray photoelectron spectroscopy, X‐ray absorption spectroscopy, spectroscopic ellipsometry, and photoluminescence excitation spectroscopy experiments representative of the occupied and unoccupied states of γ‐Ga2O3. The first onset of strong absorption at room temperature is found at 5.1 eV from spectroscopic ellipsometry, which agrees well with the excitation maximum at 5.17 eV obtained by photoluminescence excitation spectroscopy, where the latter shifts to 5.33 eV at 5 K. This work presents a leap forward in the treatment of complex, disordered oxides and is a crucial step toward exploring how their electronic structure can be understood in terms of local coordination and overall structure.
Gallium oxide (Ga2O3) is attracting increasing attention in applications such as power electronics and photodetectors due to its rich structural space and resulting electronic structure. This work explores the influence of structural disorder on a range of crucial material parameters of γ‐phase Ga2O3 by combining density functional theory and machine learning with a range of experimental probes.</description><subject>Density functional theory</subject><subject>Electronic structure</subject><subject>Excitation spectra</subject><subject>gallium oxide</subject><subject>Gallium oxides</subject><subject>Machine learning</subject><subject>MATERIALS SCIENCE</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>photoluminescence excitation spectroscopy</subject><subject>Room temperature</subject><subject>semiconductors</subject><subject>Spectroellipsometry</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>structural disorder</subject><subject>ultrawide bandgap</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kE1OwzAQRi0EEqGwZUsF65Txb-xl1EJBKuqmrC3HdsClTUqcCnXHEbgL9-AQnIRUQV3NjPRmNN9D6BLDCAOQW-PWZkSAEGAEZ0cowZzglIHixygBRXmqBJOn6CzGJQAoASJBVwtj31ahehlOQqwb55thqIY_37-fX1ND5vQcnZRmFf3Ffx2g5_u7xfghnc2nj-N8ltYUIEuNoCUjFJe2a4qMc2eExKVXjglKGCVOYuBWcmVs4YjzrBCAFS9l0e2DpQN03d-tYxt0tKH19tXWVeVtq7GUXS7ZQTc9tGnq962PrV7W26bq_tIkw4xwrCjtKNVTH2Hld3rThLVpdhqD3mvSe036oEnnk6f8MNE_Rs9bkQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ratcliff, Laura E.</creator><creator>Oshima, Takayoshi</creator><creator>Nippert, Felix</creator><creator>Janzen, Benjamin M.</creator><creator>Kluth, Elias</creator><creator>Goldhahn, Rüdiger</creator><creator>Feneberg, Martin</creator><creator>Mazzolini, Piero</creator><creator>Bierwagen, Oliver</creator><creator>Wouters, Charlotte</creator><creator>Nofal, Musbah</creator><creator>Albrecht, Martin</creator><creator>Swallow, Jack E. N.</creator><creator>Jones, Leanne A. H.</creator><creator>Thakur, Pardeep K.</creator><creator>Lee, Tien‐Lin</creator><creator>Kalha, Curran</creator><creator>Schlueter, Christoph</creator><creator>Veal, Tim D.</creator><creator>Varley, Joel B.</creator><creator>Wagner, Markus R.</creator><creator>Regoutz, Anna</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0610-5626</orcidid><orcidid>https://orcid.org/0000-0002-7367-5629</orcidid><orcidid>https://orcid.org/0000-0002-9760-5465</orcidid><orcidid>https://orcid.org/0000-0002-3387-6880</orcidid><orcidid>https://orcid.org/0000-0001-9110-6369</orcidid><orcidid>https://orcid.org/0000-0002-3747-3763</orcidid><orcidid>https://orcid.org/0000-0002-8903-4367</orcidid><orcidid>https://orcid.org/0000-0003-2092-5265</orcidid><orcidid>https://orcid.org/0000-0002-4746-5660</orcidid><orcidid>https://orcid.org/0000-0002-9599-0531</orcidid><orcidid>https://orcid.org/0000-0002-6091-6761</orcidid><orcidid>https://orcid.org/0000-0001-8550-9735</orcidid><orcidid>https://orcid.org/0000-0002-5384-5248</orcidid><orcidid>https://orcid.org/0000-0003-4253-0061</orcidid><orcidid>https://orcid.org/0000000185509735</orcidid><orcidid>https://orcid.org/0000000320925265</orcidid><orcidid>https://orcid.org/0000000297605465</orcidid><orcidid>https://orcid.org/0000000342530061</orcidid><orcidid>https://orcid.org/0000000289034367</orcidid><orcidid>https://orcid.org/0000000295990531</orcidid><orcidid>https://orcid.org/0000000273675629</orcidid><orcidid>https://orcid.org/0000000260916761</orcidid><orcidid>https://orcid.org/0000000191106369</orcidid><orcidid>https://orcid.org/0000000237473763</orcidid><orcidid>https://orcid.org/0000000247465660</orcidid><orcidid>https://orcid.org/0000000253845248</orcidid><orcidid>https://orcid.org/0000000233876880</orcidid><orcidid>https://orcid.org/0000000206105626</orcidid></search><sort><creationdate>20220901</creationdate><title>Tackling Disorder in γ‐Ga2O3</title><author>Ratcliff, Laura E. ; Oshima, Takayoshi ; Nippert, Felix ; Janzen, Benjamin M. ; Kluth, Elias ; Goldhahn, Rüdiger ; Feneberg, Martin ; Mazzolini, Piero ; Bierwagen, Oliver ; Wouters, Charlotte ; Nofal, Musbah ; Albrecht, Martin ; Swallow, Jack E. N. ; Jones, Leanne A. H. ; Thakur, Pardeep K. ; Lee, Tien‐Lin ; Kalha, Curran ; Schlueter, Christoph ; Veal, Tim D. ; Varley, Joel B. ; Wagner, Markus R. ; Regoutz, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3007-a63f4231fc63fb755da681fe9d4632432d8105c859acbd2de4b60195f8b3000c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Density functional theory</topic><topic>Electronic structure</topic><topic>Excitation spectra</topic><topic>gallium oxide</topic><topic>Gallium oxides</topic><topic>Machine learning</topic><topic>MATERIALS SCIENCE</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>photoluminescence excitation spectroscopy</topic><topic>Room temperature</topic><topic>semiconductors</topic><topic>Spectroellipsometry</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>structural disorder</topic><topic>ultrawide bandgap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratcliff, Laura E.</creatorcontrib><creatorcontrib>Oshima, Takayoshi</creatorcontrib><creatorcontrib>Nippert, Felix</creatorcontrib><creatorcontrib>Janzen, Benjamin M.</creatorcontrib><creatorcontrib>Kluth, Elias</creatorcontrib><creatorcontrib>Goldhahn, Rüdiger</creatorcontrib><creatorcontrib>Feneberg, Martin</creatorcontrib><creatorcontrib>Mazzolini, Piero</creatorcontrib><creatorcontrib>Bierwagen, Oliver</creatorcontrib><creatorcontrib>Wouters, Charlotte</creatorcontrib><creatorcontrib>Nofal, Musbah</creatorcontrib><creatorcontrib>Albrecht, Martin</creatorcontrib><creatorcontrib>Swallow, Jack E. N.</creatorcontrib><creatorcontrib>Jones, Leanne A. H.</creatorcontrib><creatorcontrib>Thakur, Pardeep K.</creatorcontrib><creatorcontrib>Lee, Tien‐Lin</creatorcontrib><creatorcontrib>Kalha, Curran</creatorcontrib><creatorcontrib>Schlueter, Christoph</creatorcontrib><creatorcontrib>Veal, Tim D.</creatorcontrib><creatorcontrib>Varley, Joel B.</creatorcontrib><creatorcontrib>Wagner, Markus R.</creatorcontrib><creatorcontrib>Regoutz, Anna</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratcliff, Laura E.</au><au>Oshima, Takayoshi</au><au>Nippert, Felix</au><au>Janzen, Benjamin M.</au><au>Kluth, Elias</au><au>Goldhahn, Rüdiger</au><au>Feneberg, Martin</au><au>Mazzolini, Piero</au><au>Bierwagen, Oliver</au><au>Wouters, Charlotte</au><au>Nofal, Musbah</au><au>Albrecht, Martin</au><au>Swallow, Jack E. N.</au><au>Jones, Leanne A. H.</au><au>Thakur, Pardeep K.</au><au>Lee, Tien‐Lin</au><au>Kalha, Curran</au><au>Schlueter, Christoph</au><au>Veal, Tim D.</au><au>Varley, Joel B.</au><au>Wagner, Markus R.</au><au>Regoutz, Anna</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tackling Disorder in γ‐Ga2O3</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>34</volume><issue>37</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Ga2O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ‐Ga2O3 presents a particular challenge across synthesis, characterization, and theory due to its inherent disorder and resulting complex structure–electronic‐structure relationship. Here, density functional theory is used in combination with a machine‐learning approach to screen nearly one million potential structures, thereby developing a robust atomistic model of the γ‐phase. Theoretical results are compared with surface and bulk sensitive soft and hard X‐ray photoelectron spectroscopy, X‐ray absorption spectroscopy, spectroscopic ellipsometry, and photoluminescence excitation spectroscopy experiments representative of the occupied and unoccupied states of γ‐Ga2O3. The first onset of strong absorption at room temperature is found at 5.1 eV from spectroscopic ellipsometry, which agrees well with the excitation maximum at 5.17 eV obtained by photoluminescence excitation spectroscopy, where the latter shifts to 5.33 eV at 5 K. This work presents a leap forward in the treatment of complex, disordered oxides and is a crucial step toward exploring how their electronic structure can be understood in terms of local coordination and overall structure.
Gallium oxide (Ga2O3) is attracting increasing attention in applications such as power electronics and photodetectors due to its rich structural space and resulting electronic structure. This work explores the influence of structural disorder on a range of crucial material parameters of γ‐phase Ga2O3 by combining density functional theory and machine learning with a range of experimental probes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202204217</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0610-5626</orcidid><orcidid>https://orcid.org/0000-0002-7367-5629</orcidid><orcidid>https://orcid.org/0000-0002-9760-5465</orcidid><orcidid>https://orcid.org/0000-0002-3387-6880</orcidid><orcidid>https://orcid.org/0000-0001-9110-6369</orcidid><orcidid>https://orcid.org/0000-0002-3747-3763</orcidid><orcidid>https://orcid.org/0000-0002-8903-4367</orcidid><orcidid>https://orcid.org/0000-0003-2092-5265</orcidid><orcidid>https://orcid.org/0000-0002-4746-5660</orcidid><orcidid>https://orcid.org/0000-0002-9599-0531</orcidid><orcidid>https://orcid.org/0000-0002-6091-6761</orcidid><orcidid>https://orcid.org/0000-0001-8550-9735</orcidid><orcidid>https://orcid.org/0000-0002-5384-5248</orcidid><orcidid>https://orcid.org/0000-0003-4253-0061</orcidid><orcidid>https://orcid.org/0000000185509735</orcidid><orcidid>https://orcid.org/0000000320925265</orcidid><orcidid>https://orcid.org/0000000297605465</orcidid><orcidid>https://orcid.org/0000000342530061</orcidid><orcidid>https://orcid.org/0000000289034367</orcidid><orcidid>https://orcid.org/0000000295990531</orcidid><orcidid>https://orcid.org/0000000273675629</orcidid><orcidid>https://orcid.org/0000000260916761</orcidid><orcidid>https://orcid.org/0000000191106369</orcidid><orcidid>https://orcid.org/0000000237473763</orcidid><orcidid>https://orcid.org/0000000247465660</orcidid><orcidid>https://orcid.org/0000000253845248</orcidid><orcidid>https://orcid.org/0000000233876880</orcidid><orcidid>https://orcid.org/0000000206105626</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2022-09, Vol.34 (37), p.n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_journals_2714251933 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Density functional theory Electronic structure Excitation spectra gallium oxide Gallium oxides Machine learning MATERIALS SCIENCE Photoelectrons Photoluminescence photoluminescence excitation spectroscopy Room temperature semiconductors Spectroellipsometry Spectroscopy Spectrum analysis structural disorder ultrawide bandgap |
title | Tackling Disorder in γ‐Ga2O3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T12%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tackling%20Disorder%20in%20%CE%B3%E2%80%90Ga2O3&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ratcliff,%20Laura%20E.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2022-09-01&rft.volume=34&rft.issue=37&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202204217&rft_dat=%3Cproquest_osti_%3E2714251933%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714251933&rft_id=info:pmid/&rfr_iscdi=true |