Tackling Disorder in γ‐Ga2O3

Ga2O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ‐Ga2O3 presents a particu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-09, Vol.34 (37), p.n/a
Hauptverfasser: Ratcliff, Laura E., Oshima, Takayoshi, Nippert, Felix, Janzen, Benjamin M., Kluth, Elias, Goldhahn, Rüdiger, Feneberg, Martin, Mazzolini, Piero, Bierwagen, Oliver, Wouters, Charlotte, Nofal, Musbah, Albrecht, Martin, Swallow, Jack E. N., Jones, Leanne A. H., Thakur, Pardeep K., Lee, Tien‐Lin, Kalha, Curran, Schlueter, Christoph, Veal, Tim D., Varley, Joel B., Wagner, Markus R., Regoutz, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 37
container_start_page
container_title Advanced materials (Weinheim)
container_volume 34
creator Ratcliff, Laura E.
Oshima, Takayoshi
Nippert, Felix
Janzen, Benjamin M.
Kluth, Elias
Goldhahn, Rüdiger
Feneberg, Martin
Mazzolini, Piero
Bierwagen, Oliver
Wouters, Charlotte
Nofal, Musbah
Albrecht, Martin
Swallow, Jack E. N.
Jones, Leanne A. H.
Thakur, Pardeep K.
Lee, Tien‐Lin
Kalha, Curran
Schlueter, Christoph
Veal, Tim D.
Varley, Joel B.
Wagner, Markus R.
Regoutz, Anna
description Ga2O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ‐Ga2O3 presents a particular challenge across synthesis, characterization, and theory due to its inherent disorder and resulting complex structure–electronic‐structure relationship. Here, density functional theory is used in combination with a machine‐learning approach to screen nearly one million potential structures, thereby developing a robust atomistic model of the γ‐phase. Theoretical results are compared with surface and bulk sensitive soft and hard X‐ray photoelectron spectroscopy, X‐ray absorption spectroscopy, spectroscopic ellipsometry, and photoluminescence excitation spectroscopy experiments representative of the occupied and unoccupied states of γ‐Ga2O3. The first onset of strong absorption at room temperature is found at 5.1 eV from spectroscopic ellipsometry, which agrees well with the excitation maximum at 5.17 eV obtained by photoluminescence excitation spectroscopy, where the latter shifts to 5.33 eV at 5 K. This work presents a leap forward in the treatment of complex, disordered oxides and is a crucial step toward exploring how their electronic structure can be understood in terms of local coordination and overall structure. Gallium oxide (Ga2O3) is attracting increasing attention in applications such as power electronics and photodetectors due to its rich structural space and resulting electronic structure. This work explores the influence of structural disorder on a range of crucial material parameters of γ‐phase Ga2O3 by combining density functional theory and machine learning with a range of experimental probes.
doi_str_mv 10.1002/adma.202204217
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2714251933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714251933</sourcerecordid><originalsourceid>FETCH-LOGICAL-o3007-a63f4231fc63fb755da681fe9d4632432d8105c859acbd2de4b60195f8b3000c3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQRi0EEqGwZUsF65Txb-xl1EJBKuqmrC3HdsClTUqcCnXHEbgL9-AQnIRUQV3NjPRmNN9D6BLDCAOQW-PWZkSAEGAEZ0cowZzglIHixygBRXmqBJOn6CzGJQAoASJBVwtj31ahehlOQqwb55thqIY_37-fX1ND5vQcnZRmFf3Ffx2g5_u7xfghnc2nj-N8ltYUIEuNoCUjFJe2a4qMc2eExKVXjglKGCVOYuBWcmVs4YjzrBCAFS9l0e2DpQN03d-tYxt0tKH19tXWVeVtq7GUXS7ZQTc9tGnq962PrV7W26bq_tIkw4xwrCjtKNVTH2Hld3rThLVpdhqD3mvSe036oEnnk6f8MNE_Rs9bkQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714251933</pqid></control><display><type>article</type><title>Tackling Disorder in γ‐Ga2O3</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ratcliff, Laura E. ; Oshima, Takayoshi ; Nippert, Felix ; Janzen, Benjamin M. ; Kluth, Elias ; Goldhahn, Rüdiger ; Feneberg, Martin ; Mazzolini, Piero ; Bierwagen, Oliver ; Wouters, Charlotte ; Nofal, Musbah ; Albrecht, Martin ; Swallow, Jack E. N. ; Jones, Leanne A. H. ; Thakur, Pardeep K. ; Lee, Tien‐Lin ; Kalha, Curran ; Schlueter, Christoph ; Veal, Tim D. ; Varley, Joel B. ; Wagner, Markus R. ; Regoutz, Anna</creator><creatorcontrib>Ratcliff, Laura E. ; Oshima, Takayoshi ; Nippert, Felix ; Janzen, Benjamin M. ; Kluth, Elias ; Goldhahn, Rüdiger ; Feneberg, Martin ; Mazzolini, Piero ; Bierwagen, Oliver ; Wouters, Charlotte ; Nofal, Musbah ; Albrecht, Martin ; Swallow, Jack E. N. ; Jones, Leanne A. H. ; Thakur, Pardeep K. ; Lee, Tien‐Lin ; Kalha, Curran ; Schlueter, Christoph ; Veal, Tim D. ; Varley, Joel B. ; Wagner, Markus R. ; Regoutz, Anna ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>Ga2O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ‐Ga2O3 presents a particular challenge across synthesis, characterization, and theory due to its inherent disorder and resulting complex structure–electronic‐structure relationship. Here, density functional theory is used in combination with a machine‐learning approach to screen nearly one million potential structures, thereby developing a robust atomistic model of the γ‐phase. Theoretical results are compared with surface and bulk sensitive soft and hard X‐ray photoelectron spectroscopy, X‐ray absorption spectroscopy, spectroscopic ellipsometry, and photoluminescence excitation spectroscopy experiments representative of the occupied and unoccupied states of γ‐Ga2O3. The first onset of strong absorption at room temperature is found at 5.1 eV from spectroscopic ellipsometry, which agrees well with the excitation maximum at 5.17 eV obtained by photoluminescence excitation spectroscopy, where the latter shifts to 5.33 eV at 5 K. This work presents a leap forward in the treatment of complex, disordered oxides and is a crucial step toward exploring how their electronic structure can be understood in terms of local coordination and overall structure. Gallium oxide (Ga2O3) is attracting increasing attention in applications such as power electronics and photodetectors due to its rich structural space and resulting electronic structure. This work explores the influence of structural disorder on a range of crucial material parameters of γ‐phase Ga2O3 by combining density functional theory and machine learning with a range of experimental probes.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202204217</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Density functional theory ; Electronic structure ; Excitation spectra ; gallium oxide ; Gallium oxides ; Machine learning ; MATERIALS SCIENCE ; Photoelectrons ; Photoluminescence ; photoluminescence excitation spectroscopy ; Room temperature ; semiconductors ; Spectroellipsometry ; Spectroscopy ; Spectrum analysis ; structural disorder ; ultrawide bandgap</subject><ispartof>Advanced materials (Weinheim), 2022-09, Vol.34 (37), p.n/a</ispartof><rights>2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0610-5626 ; 0000-0002-7367-5629 ; 0000-0002-9760-5465 ; 0000-0002-3387-6880 ; 0000-0001-9110-6369 ; 0000-0002-3747-3763 ; 0000-0002-8903-4367 ; 0000-0003-2092-5265 ; 0000-0002-4746-5660 ; 0000-0002-9599-0531 ; 0000-0002-6091-6761 ; 0000-0001-8550-9735 ; 0000-0002-5384-5248 ; 0000-0003-4253-0061 ; 0000000185509735 ; 0000000320925265 ; 0000000297605465 ; 0000000342530061 ; 0000000289034367 ; 0000000295990531 ; 0000000273675629 ; 0000000260916761 ; 0000000191106369 ; 0000000237473763 ; 0000000247465660 ; 0000000253845248 ; 0000000233876880 ; 0000000206105626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202204217$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202204217$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1882028$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ratcliff, Laura E.</creatorcontrib><creatorcontrib>Oshima, Takayoshi</creatorcontrib><creatorcontrib>Nippert, Felix</creatorcontrib><creatorcontrib>Janzen, Benjamin M.</creatorcontrib><creatorcontrib>Kluth, Elias</creatorcontrib><creatorcontrib>Goldhahn, Rüdiger</creatorcontrib><creatorcontrib>Feneberg, Martin</creatorcontrib><creatorcontrib>Mazzolini, Piero</creatorcontrib><creatorcontrib>Bierwagen, Oliver</creatorcontrib><creatorcontrib>Wouters, Charlotte</creatorcontrib><creatorcontrib>Nofal, Musbah</creatorcontrib><creatorcontrib>Albrecht, Martin</creatorcontrib><creatorcontrib>Swallow, Jack E. N.</creatorcontrib><creatorcontrib>Jones, Leanne A. H.</creatorcontrib><creatorcontrib>Thakur, Pardeep K.</creatorcontrib><creatorcontrib>Lee, Tien‐Lin</creatorcontrib><creatorcontrib>Kalha, Curran</creatorcontrib><creatorcontrib>Schlueter, Christoph</creatorcontrib><creatorcontrib>Veal, Tim D.</creatorcontrib><creatorcontrib>Varley, Joel B.</creatorcontrib><creatorcontrib>Wagner, Markus R.</creatorcontrib><creatorcontrib>Regoutz, Anna</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Tackling Disorder in γ‐Ga2O3</title><title>Advanced materials (Weinheim)</title><description>Ga2O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ‐Ga2O3 presents a particular challenge across synthesis, characterization, and theory due to its inherent disorder and resulting complex structure–electronic‐structure relationship. Here, density functional theory is used in combination with a machine‐learning approach to screen nearly one million potential structures, thereby developing a robust atomistic model of the γ‐phase. Theoretical results are compared with surface and bulk sensitive soft and hard X‐ray photoelectron spectroscopy, X‐ray absorption spectroscopy, spectroscopic ellipsometry, and photoluminescence excitation spectroscopy experiments representative of the occupied and unoccupied states of γ‐Ga2O3. The first onset of strong absorption at room temperature is found at 5.1 eV from spectroscopic ellipsometry, which agrees well with the excitation maximum at 5.17 eV obtained by photoluminescence excitation spectroscopy, where the latter shifts to 5.33 eV at 5 K. This work presents a leap forward in the treatment of complex, disordered oxides and is a crucial step toward exploring how their electronic structure can be understood in terms of local coordination and overall structure. Gallium oxide (Ga2O3) is attracting increasing attention in applications such as power electronics and photodetectors due to its rich structural space and resulting electronic structure. This work explores the influence of structural disorder on a range of crucial material parameters of γ‐phase Ga2O3 by combining density functional theory and machine learning with a range of experimental probes.</description><subject>Density functional theory</subject><subject>Electronic structure</subject><subject>Excitation spectra</subject><subject>gallium oxide</subject><subject>Gallium oxides</subject><subject>Machine learning</subject><subject>MATERIALS SCIENCE</subject><subject>Photoelectrons</subject><subject>Photoluminescence</subject><subject>photoluminescence excitation spectroscopy</subject><subject>Room temperature</subject><subject>semiconductors</subject><subject>Spectroellipsometry</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>structural disorder</subject><subject>ultrawide bandgap</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNo9kE1OwzAQRi0EEqGwZUsF65Txb-xl1EJBKuqmrC3HdsClTUqcCnXHEbgL9-AQnIRUQV3NjPRmNN9D6BLDCAOQW-PWZkSAEGAEZ0cowZzglIHixygBRXmqBJOn6CzGJQAoASJBVwtj31ahehlOQqwb55thqIY_37-fX1ND5vQcnZRmFf3Ffx2g5_u7xfghnc2nj-N8ltYUIEuNoCUjFJe2a4qMc2eExKVXjglKGCVOYuBWcmVs4YjzrBCAFS9l0e2DpQN03d-tYxt0tKH19tXWVeVtq7GUXS7ZQTc9tGnq962PrV7W26bq_tIkw4xwrCjtKNVTH2Hld3rThLVpdhqD3mvSe036oEnnk6f8MNE_Rs9bkQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Ratcliff, Laura E.</creator><creator>Oshima, Takayoshi</creator><creator>Nippert, Felix</creator><creator>Janzen, Benjamin M.</creator><creator>Kluth, Elias</creator><creator>Goldhahn, Rüdiger</creator><creator>Feneberg, Martin</creator><creator>Mazzolini, Piero</creator><creator>Bierwagen, Oliver</creator><creator>Wouters, Charlotte</creator><creator>Nofal, Musbah</creator><creator>Albrecht, Martin</creator><creator>Swallow, Jack E. N.</creator><creator>Jones, Leanne A. H.</creator><creator>Thakur, Pardeep K.</creator><creator>Lee, Tien‐Lin</creator><creator>Kalha, Curran</creator><creator>Schlueter, Christoph</creator><creator>Veal, Tim D.</creator><creator>Varley, Joel B.</creator><creator>Wagner, Markus R.</creator><creator>Regoutz, Anna</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0610-5626</orcidid><orcidid>https://orcid.org/0000-0002-7367-5629</orcidid><orcidid>https://orcid.org/0000-0002-9760-5465</orcidid><orcidid>https://orcid.org/0000-0002-3387-6880</orcidid><orcidid>https://orcid.org/0000-0001-9110-6369</orcidid><orcidid>https://orcid.org/0000-0002-3747-3763</orcidid><orcidid>https://orcid.org/0000-0002-8903-4367</orcidid><orcidid>https://orcid.org/0000-0003-2092-5265</orcidid><orcidid>https://orcid.org/0000-0002-4746-5660</orcidid><orcidid>https://orcid.org/0000-0002-9599-0531</orcidid><orcidid>https://orcid.org/0000-0002-6091-6761</orcidid><orcidid>https://orcid.org/0000-0001-8550-9735</orcidid><orcidid>https://orcid.org/0000-0002-5384-5248</orcidid><orcidid>https://orcid.org/0000-0003-4253-0061</orcidid><orcidid>https://orcid.org/0000000185509735</orcidid><orcidid>https://orcid.org/0000000320925265</orcidid><orcidid>https://orcid.org/0000000297605465</orcidid><orcidid>https://orcid.org/0000000342530061</orcidid><orcidid>https://orcid.org/0000000289034367</orcidid><orcidid>https://orcid.org/0000000295990531</orcidid><orcidid>https://orcid.org/0000000273675629</orcidid><orcidid>https://orcid.org/0000000260916761</orcidid><orcidid>https://orcid.org/0000000191106369</orcidid><orcidid>https://orcid.org/0000000237473763</orcidid><orcidid>https://orcid.org/0000000247465660</orcidid><orcidid>https://orcid.org/0000000253845248</orcidid><orcidid>https://orcid.org/0000000233876880</orcidid><orcidid>https://orcid.org/0000000206105626</orcidid></search><sort><creationdate>20220901</creationdate><title>Tackling Disorder in γ‐Ga2O3</title><author>Ratcliff, Laura E. ; Oshima, Takayoshi ; Nippert, Felix ; Janzen, Benjamin M. ; Kluth, Elias ; Goldhahn, Rüdiger ; Feneberg, Martin ; Mazzolini, Piero ; Bierwagen, Oliver ; Wouters, Charlotte ; Nofal, Musbah ; Albrecht, Martin ; Swallow, Jack E. N. ; Jones, Leanne A. H. ; Thakur, Pardeep K. ; Lee, Tien‐Lin ; Kalha, Curran ; Schlueter, Christoph ; Veal, Tim D. ; Varley, Joel B. ; Wagner, Markus R. ; Regoutz, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o3007-a63f4231fc63fb755da681fe9d4632432d8105c859acbd2de4b60195f8b3000c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Density functional theory</topic><topic>Electronic structure</topic><topic>Excitation spectra</topic><topic>gallium oxide</topic><topic>Gallium oxides</topic><topic>Machine learning</topic><topic>MATERIALS SCIENCE</topic><topic>Photoelectrons</topic><topic>Photoluminescence</topic><topic>photoluminescence excitation spectroscopy</topic><topic>Room temperature</topic><topic>semiconductors</topic><topic>Spectroellipsometry</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>structural disorder</topic><topic>ultrawide bandgap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratcliff, Laura E.</creatorcontrib><creatorcontrib>Oshima, Takayoshi</creatorcontrib><creatorcontrib>Nippert, Felix</creatorcontrib><creatorcontrib>Janzen, Benjamin M.</creatorcontrib><creatorcontrib>Kluth, Elias</creatorcontrib><creatorcontrib>Goldhahn, Rüdiger</creatorcontrib><creatorcontrib>Feneberg, Martin</creatorcontrib><creatorcontrib>Mazzolini, Piero</creatorcontrib><creatorcontrib>Bierwagen, Oliver</creatorcontrib><creatorcontrib>Wouters, Charlotte</creatorcontrib><creatorcontrib>Nofal, Musbah</creatorcontrib><creatorcontrib>Albrecht, Martin</creatorcontrib><creatorcontrib>Swallow, Jack E. N.</creatorcontrib><creatorcontrib>Jones, Leanne A. H.</creatorcontrib><creatorcontrib>Thakur, Pardeep K.</creatorcontrib><creatorcontrib>Lee, Tien‐Lin</creatorcontrib><creatorcontrib>Kalha, Curran</creatorcontrib><creatorcontrib>Schlueter, Christoph</creatorcontrib><creatorcontrib>Veal, Tim D.</creatorcontrib><creatorcontrib>Varley, Joel B.</creatorcontrib><creatorcontrib>Wagner, Markus R.</creatorcontrib><creatorcontrib>Regoutz, Anna</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratcliff, Laura E.</au><au>Oshima, Takayoshi</au><au>Nippert, Felix</au><au>Janzen, Benjamin M.</au><au>Kluth, Elias</au><au>Goldhahn, Rüdiger</au><au>Feneberg, Martin</au><au>Mazzolini, Piero</au><au>Bierwagen, Oliver</au><au>Wouters, Charlotte</au><au>Nofal, Musbah</au><au>Albrecht, Martin</au><au>Swallow, Jack E. N.</au><au>Jones, Leanne A. H.</au><au>Thakur, Pardeep K.</au><au>Lee, Tien‐Lin</au><au>Kalha, Curran</au><au>Schlueter, Christoph</au><au>Veal, Tim D.</au><au>Varley, Joel B.</au><au>Wagner, Markus R.</au><au>Regoutz, Anna</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tackling Disorder in γ‐Ga2O3</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>34</volume><issue>37</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Ga2O3 and its polymorphs are attracting increasing attention. The rich structural space of polymorphic oxide systems such as Ga2O3 offers potential for electronic structure engineering, which is of particular interest for a range of applications, such as power electronics. γ‐Ga2O3 presents a particular challenge across synthesis, characterization, and theory due to its inherent disorder and resulting complex structure–electronic‐structure relationship. Here, density functional theory is used in combination with a machine‐learning approach to screen nearly one million potential structures, thereby developing a robust atomistic model of the γ‐phase. Theoretical results are compared with surface and bulk sensitive soft and hard X‐ray photoelectron spectroscopy, X‐ray absorption spectroscopy, spectroscopic ellipsometry, and photoluminescence excitation spectroscopy experiments representative of the occupied and unoccupied states of γ‐Ga2O3. The first onset of strong absorption at room temperature is found at 5.1 eV from spectroscopic ellipsometry, which agrees well with the excitation maximum at 5.17 eV obtained by photoluminescence excitation spectroscopy, where the latter shifts to 5.33 eV at 5 K. This work presents a leap forward in the treatment of complex, disordered oxides and is a crucial step toward exploring how their electronic structure can be understood in terms of local coordination and overall structure. Gallium oxide (Ga2O3) is attracting increasing attention in applications such as power electronics and photodetectors due to its rich structural space and resulting electronic structure. This work explores the influence of structural disorder on a range of crucial material parameters of γ‐phase Ga2O3 by combining density functional theory and machine learning with a range of experimental probes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202204217</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0610-5626</orcidid><orcidid>https://orcid.org/0000-0002-7367-5629</orcidid><orcidid>https://orcid.org/0000-0002-9760-5465</orcidid><orcidid>https://orcid.org/0000-0002-3387-6880</orcidid><orcidid>https://orcid.org/0000-0001-9110-6369</orcidid><orcidid>https://orcid.org/0000-0002-3747-3763</orcidid><orcidid>https://orcid.org/0000-0002-8903-4367</orcidid><orcidid>https://orcid.org/0000-0003-2092-5265</orcidid><orcidid>https://orcid.org/0000-0002-4746-5660</orcidid><orcidid>https://orcid.org/0000-0002-9599-0531</orcidid><orcidid>https://orcid.org/0000-0002-6091-6761</orcidid><orcidid>https://orcid.org/0000-0001-8550-9735</orcidid><orcidid>https://orcid.org/0000-0002-5384-5248</orcidid><orcidid>https://orcid.org/0000-0003-4253-0061</orcidid><orcidid>https://orcid.org/0000000185509735</orcidid><orcidid>https://orcid.org/0000000320925265</orcidid><orcidid>https://orcid.org/0000000297605465</orcidid><orcidid>https://orcid.org/0000000342530061</orcidid><orcidid>https://orcid.org/0000000289034367</orcidid><orcidid>https://orcid.org/0000000295990531</orcidid><orcidid>https://orcid.org/0000000273675629</orcidid><orcidid>https://orcid.org/0000000260916761</orcidid><orcidid>https://orcid.org/0000000191106369</orcidid><orcidid>https://orcid.org/0000000237473763</orcidid><orcidid>https://orcid.org/0000000247465660</orcidid><orcidid>https://orcid.org/0000000253845248</orcidid><orcidid>https://orcid.org/0000000233876880</orcidid><orcidid>https://orcid.org/0000000206105626</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-09, Vol.34 (37), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2714251933
source Wiley Online Library Journals Frontfile Complete
subjects Density functional theory
Electronic structure
Excitation spectra
gallium oxide
Gallium oxides
Machine learning
MATERIALS SCIENCE
Photoelectrons
Photoluminescence
photoluminescence excitation spectroscopy
Room temperature
semiconductors
Spectroellipsometry
Spectroscopy
Spectrum analysis
structural disorder
ultrawide bandgap
title Tackling Disorder in γ‐Ga2O3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T12%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tackling%20Disorder%20in%20%CE%B3%E2%80%90Ga2O3&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Ratcliff,%20Laura%20E.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2022-09-01&rft.volume=34&rft.issue=37&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202204217&rft_dat=%3Cproquest_osti_%3E2714251933%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714251933&rft_id=info:pmid/&rfr_iscdi=true