Thermoelectric performance of multiphase GeSe‐CuSe composites prepared by hydrogen decrepitation method

Summary Recently, lead and tellurium‐free GeSe chalcogenide‐based thermoelectric materials have been considered as an alternative for PbTe and GeTe because of their nontoxic and attractive properties. However, the reports on thermoelectric properties of GeSe are very limited with low power factor va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2022-10, Vol.46 (12), p.17455-17464
Hauptverfasser: Sidharth, D., Alagar Nedunchezhian, A.S., Rajkumar, R., Kalaiarasan, K., Arivanandhan, M., Fujiwara, K., Anbalagan, G., Jayavel, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17464
container_issue 12
container_start_page 17455
container_title International journal of energy research
container_volume 46
creator Sidharth, D.
Alagar Nedunchezhian, A.S.
Rajkumar, R.
Kalaiarasan, K.
Arivanandhan, M.
Fujiwara, K.
Anbalagan, G.
Jayavel, R.
description Summary Recently, lead and tellurium‐free GeSe chalcogenide‐based thermoelectric materials have been considered as an alternative for PbTe and GeTe because of their nontoxic and attractive properties. However, the reports on thermoelectric properties of GeSe are very limited with low power factor values. Herein, we report the effect of Cu substitution on mixed phase formation and thermoelectric performance of Ge1−xCuxSe (0.0 ≤ x ≤ 0.4) samples. In the prepared samples, the multiphases of orthorhombic/Imm2 Cu2GeSe3, cubic/Fm3m Cu2Se, hexagonal/P63mc CuSe, hexagonal/P63/mmc Cu8GeSe6, and orthorhombic/Pnnm CuSe2 were observed, due to incorporation of Cu in GeSe as confirmed by X‐ray diffraction analysis. The electrical resistivity of the samples decreased with x values due to the formation of Cu‐rich phases. Moreover, the mobility of GeSe increased by one order through Cu substitution resulting from the percolation effect in the sample with multiphases. A high‐power factor of 720 μW/K2m was achieved at 500 K for the Ge0.6Cu0.4Se samples with thermal conductivity (κL) of 1.47 Wm−1κ−1 at the same temperature which resulted in a high figure of merit (ZT) ~ 0.26, due to Cu‐rich multiphases in the sample. ZT of GeSe is significantly enhanced by multiphase. Cu substitution changes the phases in the material and the Cu‐rich phases modulate the carrier concentration which results in high ZT.
doi_str_mv 10.1002/er.8413
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2714250181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714250181</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2893-c84a3888ceb505af7bae8b0555534c64ddce4a1d9478181281906c06113724ce3</originalsourceid><addsrcrecordid>eNp10FFLwzAQAOAgCs4p_oWADz5IZ9KkbfooY5vCQHAT9hbS9Goz2qYmLdI3f4K_0V9i53z1Xg7uvruDQ-iakhklJLwHNxOcshM0oSRNA0r57hRNCItZkJJkd44uvN8TMvZoMkFmW4KrLVSgO2c0bsEV1tWq0YBtgeu-6kxbKg94BRv4_vya9xvA2tat9aYDj1sHrXKQ42zA5ZA7-wYNzkGPZdOpztgG19CVNr9EZ4WqPFz95Sl6XS6288dg_bx6mj-sAx2KlAVacMWEEBqyiESqSDIFIiPRGIzrmOe5Bq5onvJEUEFDQVMSaxJTypKQa2BTdHPc2zr73oPv5N72rhlPyjChPIzIODaq26PSznrvoJCtM7Vyg6REHv4owcnDH0d5d5QfpoLhPyYXL7_6B-3BdPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714250181</pqid></control><display><type>article</type><title>Thermoelectric performance of multiphase GeSe‐CuSe composites prepared by hydrogen decrepitation method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sidharth, D. ; Alagar Nedunchezhian, A.S. ; Rajkumar, R. ; Kalaiarasan, K. ; Arivanandhan, M. ; Fujiwara, K. ; Anbalagan, G. ; Jayavel, R.</creator><creatorcontrib>Sidharth, D. ; Alagar Nedunchezhian, A.S. ; Rajkumar, R. ; Kalaiarasan, K. ; Arivanandhan, M. ; Fujiwara, K. ; Anbalagan, G. ; Jayavel, R.</creatorcontrib><description>Summary Recently, lead and tellurium‐free GeSe chalcogenide‐based thermoelectric materials have been considered as an alternative for PbTe and GeTe because of their nontoxic and attractive properties. However, the reports on thermoelectric properties of GeSe are very limited with low power factor values. Herein, we report the effect of Cu substitution on mixed phase formation and thermoelectric performance of Ge1−xCuxSe (0.0 ≤ x ≤ 0.4) samples. In the prepared samples, the multiphases of orthorhombic/Imm2 Cu2GeSe3, cubic/Fm3m Cu2Se, hexagonal/P63mc CuSe, hexagonal/P63/mmc Cu8GeSe6, and orthorhombic/Pnnm CuSe2 were observed, due to incorporation of Cu in GeSe as confirmed by X‐ray diffraction analysis. The electrical resistivity of the samples decreased with x values due to the formation of Cu‐rich phases. Moreover, the mobility of GeSe increased by one order through Cu substitution resulting from the percolation effect in the sample with multiphases. A high‐power factor of 720 μW/K2m was achieved at 500 K for the Ge0.6Cu0.4Se samples with thermal conductivity (κL) of 1.47 Wm−1κ−1 at the same temperature which resulted in a high figure of merit (ZT) ~ 0.26, due to Cu‐rich multiphases in the sample. ZT of GeSe is significantly enhanced by multiphase. Cu substitution changes the phases in the material and the Cu‐rich phases modulate the carrier concentration which results in high ZT.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1002/er.8413</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Inc</publisher><subject>Copper ; Copper selenides ; Electrical resistivity ; Figure of merit ; GeSe ; Hydrogen decrepitation ; hydrogen decrepitation method ; lattice thermal conductivity ; Materials substitution ; multiphase ; Percolation ; Power factor ; power factor and ZT ; Properties ; Tellurium ; Thermal conductivity ; Thermoelectric materials</subject><ispartof>International journal of energy research, 2022-10, Vol.46 (12), p.17455-17464</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2022 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2893-c84a3888ceb505af7bae8b0555534c64ddce4a1d9478181281906c06113724ce3</citedby><cites>FETCH-LOGICAL-c2893-c84a3888ceb505af7bae8b0555534c64ddce4a1d9478181281906c06113724ce3</cites><orcidid>0000-0002-5165-5096 ; 0000-0003-4175-2033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fer.8413$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fer.8413$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Sidharth, D.</creatorcontrib><creatorcontrib>Alagar Nedunchezhian, A.S.</creatorcontrib><creatorcontrib>Rajkumar, R.</creatorcontrib><creatorcontrib>Kalaiarasan, K.</creatorcontrib><creatorcontrib>Arivanandhan, M.</creatorcontrib><creatorcontrib>Fujiwara, K.</creatorcontrib><creatorcontrib>Anbalagan, G.</creatorcontrib><creatorcontrib>Jayavel, R.</creatorcontrib><title>Thermoelectric performance of multiphase GeSe‐CuSe composites prepared by hydrogen decrepitation method</title><title>International journal of energy research</title><description>Summary Recently, lead and tellurium‐free GeSe chalcogenide‐based thermoelectric materials have been considered as an alternative for PbTe and GeTe because of their nontoxic and attractive properties. However, the reports on thermoelectric properties of GeSe are very limited with low power factor values. Herein, we report the effect of Cu substitution on mixed phase formation and thermoelectric performance of Ge1−xCuxSe (0.0 ≤ x ≤ 0.4) samples. In the prepared samples, the multiphases of orthorhombic/Imm2 Cu2GeSe3, cubic/Fm3m Cu2Se, hexagonal/P63mc CuSe, hexagonal/P63/mmc Cu8GeSe6, and orthorhombic/Pnnm CuSe2 were observed, due to incorporation of Cu in GeSe as confirmed by X‐ray diffraction analysis. The electrical resistivity of the samples decreased with x values due to the formation of Cu‐rich phases. Moreover, the mobility of GeSe increased by one order through Cu substitution resulting from the percolation effect in the sample with multiphases. A high‐power factor of 720 μW/K2m was achieved at 500 K for the Ge0.6Cu0.4Se samples with thermal conductivity (κL) of 1.47 Wm−1κ−1 at the same temperature which resulted in a high figure of merit (ZT) ~ 0.26, due to Cu‐rich multiphases in the sample. ZT of GeSe is significantly enhanced by multiphase. Cu substitution changes the phases in the material and the Cu‐rich phases modulate the carrier concentration which results in high ZT.</description><subject>Copper</subject><subject>Copper selenides</subject><subject>Electrical resistivity</subject><subject>Figure of merit</subject><subject>GeSe</subject><subject>Hydrogen decrepitation</subject><subject>hydrogen decrepitation method</subject><subject>lattice thermal conductivity</subject><subject>Materials substitution</subject><subject>multiphase</subject><subject>Percolation</subject><subject>Power factor</subject><subject>power factor and ZT</subject><subject>Properties</subject><subject>Tellurium</subject><subject>Thermal conductivity</subject><subject>Thermoelectric materials</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp10FFLwzAQAOAgCs4p_oWADz5IZ9KkbfooY5vCQHAT9hbS9Goz2qYmLdI3f4K_0V9i53z1Xg7uvruDQ-iakhklJLwHNxOcshM0oSRNA0r57hRNCItZkJJkd44uvN8TMvZoMkFmW4KrLVSgO2c0bsEV1tWq0YBtgeu-6kxbKg94BRv4_vya9xvA2tat9aYDj1sHrXKQ42zA5ZA7-wYNzkGPZdOpztgG19CVNr9EZ4WqPFz95Sl6XS6288dg_bx6mj-sAx2KlAVacMWEEBqyiESqSDIFIiPRGIzrmOe5Bq5onvJEUEFDQVMSaxJTypKQa2BTdHPc2zr73oPv5N72rhlPyjChPIzIODaq26PSznrvoJCtM7Vyg6REHv4owcnDH0d5d5QfpoLhPyYXL7_6B-3BdPA</recordid><startdate>20221010</startdate><enddate>20221010</enddate><creator>Sidharth, D.</creator><creator>Alagar Nedunchezhian, A.S.</creator><creator>Rajkumar, R.</creator><creator>Kalaiarasan, K.</creator><creator>Arivanandhan, M.</creator><creator>Fujiwara, K.</creator><creator>Anbalagan, G.</creator><creator>Jayavel, R.</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5165-5096</orcidid><orcidid>https://orcid.org/0000-0003-4175-2033</orcidid></search><sort><creationdate>20221010</creationdate><title>Thermoelectric performance of multiphase GeSe‐CuSe composites prepared by hydrogen decrepitation method</title><author>Sidharth, D. ; Alagar Nedunchezhian, A.S. ; Rajkumar, R. ; Kalaiarasan, K. ; Arivanandhan, M. ; Fujiwara, K. ; Anbalagan, G. ; Jayavel, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2893-c84a3888ceb505af7bae8b0555534c64ddce4a1d9478181281906c06113724ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Copper</topic><topic>Copper selenides</topic><topic>Electrical resistivity</topic><topic>Figure of merit</topic><topic>GeSe</topic><topic>Hydrogen decrepitation</topic><topic>hydrogen decrepitation method</topic><topic>lattice thermal conductivity</topic><topic>Materials substitution</topic><topic>multiphase</topic><topic>Percolation</topic><topic>Power factor</topic><topic>power factor and ZT</topic><topic>Properties</topic><topic>Tellurium</topic><topic>Thermal conductivity</topic><topic>Thermoelectric materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sidharth, D.</creatorcontrib><creatorcontrib>Alagar Nedunchezhian, A.S.</creatorcontrib><creatorcontrib>Rajkumar, R.</creatorcontrib><creatorcontrib>Kalaiarasan, K.</creatorcontrib><creatorcontrib>Arivanandhan, M.</creatorcontrib><creatorcontrib>Fujiwara, K.</creatorcontrib><creatorcontrib>Anbalagan, G.</creatorcontrib><creatorcontrib>Jayavel, R.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sidharth, D.</au><au>Alagar Nedunchezhian, A.S.</au><au>Rajkumar, R.</au><au>Kalaiarasan, K.</au><au>Arivanandhan, M.</au><au>Fujiwara, K.</au><au>Anbalagan, G.</au><au>Jayavel, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric performance of multiphase GeSe‐CuSe composites prepared by hydrogen decrepitation method</atitle><jtitle>International journal of energy research</jtitle><date>2022-10-10</date><risdate>2022</risdate><volume>46</volume><issue>12</issue><spage>17455</spage><epage>17464</epage><pages>17455-17464</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Summary Recently, lead and tellurium‐free GeSe chalcogenide‐based thermoelectric materials have been considered as an alternative for PbTe and GeTe because of their nontoxic and attractive properties. However, the reports on thermoelectric properties of GeSe are very limited with low power factor values. Herein, we report the effect of Cu substitution on mixed phase formation and thermoelectric performance of Ge1−xCuxSe (0.0 ≤ x ≤ 0.4) samples. In the prepared samples, the multiphases of orthorhombic/Imm2 Cu2GeSe3, cubic/Fm3m Cu2Se, hexagonal/P63mc CuSe, hexagonal/P63/mmc Cu8GeSe6, and orthorhombic/Pnnm CuSe2 were observed, due to incorporation of Cu in GeSe as confirmed by X‐ray diffraction analysis. The electrical resistivity of the samples decreased with x values due to the formation of Cu‐rich phases. Moreover, the mobility of GeSe increased by one order through Cu substitution resulting from the percolation effect in the sample with multiphases. A high‐power factor of 720 μW/K2m was achieved at 500 K for the Ge0.6Cu0.4Se samples with thermal conductivity (κL) of 1.47 Wm−1κ−1 at the same temperature which resulted in a high figure of merit (ZT) ~ 0.26, due to Cu‐rich multiphases in the sample. ZT of GeSe is significantly enhanced by multiphase. Cu substitution changes the phases in the material and the Cu‐rich phases modulate the carrier concentration which results in high ZT.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/er.8413</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5165-5096</orcidid><orcidid>https://orcid.org/0000-0003-4175-2033</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2022-10, Vol.46 (12), p.17455-17464
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2714250181
source Wiley Online Library Journals Frontfile Complete
subjects Copper
Copper selenides
Electrical resistivity
Figure of merit
GeSe
Hydrogen decrepitation
hydrogen decrepitation method
lattice thermal conductivity
Materials substitution
multiphase
Percolation
Power factor
power factor and ZT
Properties
Tellurium
Thermal conductivity
Thermoelectric materials
title Thermoelectric performance of multiphase GeSe‐CuSe composites prepared by hydrogen decrepitation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T07%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20performance%20of%20multiphase%20GeSe%E2%80%90CuSe%20composites%20prepared%20by%20hydrogen%20decrepitation%20method&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Sidharth,%20D.&rft.date=2022-10-10&rft.volume=46&rft.issue=12&rft.spage=17455&rft.epage=17464&rft.pages=17455-17464&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1002/er.8413&rft_dat=%3Cproquest_cross%3E2714250181%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714250181&rft_id=info:pmid/&rfr_iscdi=true