Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction

Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-09, Vol.12 (35), p.n/a
Hauptverfasser: Abdelhafiz, Ali, Wang, Baoming, Harutyunyan, Avetik R., Li, Ju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 35
container_start_page
container_title Advanced energy materials
container_volume 12
creator Abdelhafiz, Ali
Wang, Baoming
Harutyunyan, Avetik R.
Li, Ju
description Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high entropy alloy nanoparticles, which later transform to oxide/hydroxide nanoparticles upon use in aqueous electrolytes. Herein, an in situ synthesis of non‐noble metal high entropy oxide (HEO) catalysts on carbon fibers by rapid Joule heating and quenching is reported. Different compositions of ternary to senary (FeNiCoCrMnV) HEO nanoparticles show higher activity towards catalyzing the oxygen evolution reaction (OER) compared to a noble metal IrO2 catalyst. The synthesized HEO also show two orders of magnitude higher stability than IrO2, due to stronger carbide‐mediated intimacy with the substrate, activated through the OER process. Alloying elements Cr, Mn and V affect OER activity by promoting different oxidation states of the catalytically active TM (Fe, Ni and Co). Dissolution of less stable elements (Mn, V and Cr) leads to enhancements of OER activity. Dynamic structural and chemical perturbations of HEO oxide nanoparticles activate under OER conditions, leading to enlargement in ECSA by forming mixed single atom catalysts and ultra‐fine oxyhydroxide nanoparticles HEOs. In situ structural and morphological perturbations that occur during an electrocatalytic reaction process, yield an ever‐improving catalyst, and an exceptionally intimate interaction with catalyst‐support for ultra‐prolonged operations. A revolutionary nanomaterials synthesis strategy overcomes thermodynamic governing rules, produces novel chemistries at a millionfold greater throughput rate than conventional methods.
doi_str_mv 10.1002/aenm.202200742
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2714250047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714250047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4232-964ff8a00b08b282769ad758b3f4c2610f29e48389f4106a6922705bbd52f9143</originalsourceid><addsrcrecordid>eNqFkctOwzAQRSMEEgi6ZW2JdYo9cfNgV0J5SAWkFtaRk9iNIbWL7RTybfwcbovKEm_smbn3jOQbBOcEDwnGcMm4Wg4BA2CcUDgITkhMaBinFB_u3xEcBwNr37A_NCM4ik6C75yZUruGmyVr0bzR1Tua98o3rLRIC3QvFw2aKGf0qkfPX7LmKGeOtb119grd9IotZYXmznSV64xnMFWjvOG-64sZr7Sy26HUCl1rbZ1UC-T5vxjn3WM_XUvXb71zx0rZbiqnP5mp_dJ-wRWarHXbbSkzzra4s-BIsNbywe99GrzeTl7y-3D6fPeQj6dhRSGCMIupECnDuMRpCSkkccbqZJSWkaAVxAQLyDhNozQTlOCYxRlAgkdlWY9AZIRGp8HFjrsy-qPj1hVvujPKrywgIRRG_jsTrxruVJXR1houipWRS2b6guBik1GxyajYZ-QN2c7wKVve_6MuxpOnxz_vD6ErmLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714250047</pqid></control><display><type>article</type><title>Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Abdelhafiz, Ali ; Wang, Baoming ; Harutyunyan, Avetik R. ; Li, Ju</creator><creatorcontrib>Abdelhafiz, Ali ; Wang, Baoming ; Harutyunyan, Avetik R. ; Li, Ju</creatorcontrib><description>Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high entropy alloy nanoparticles, which later transform to oxide/hydroxide nanoparticles upon use in aqueous electrolytes. Herein, an in situ synthesis of non‐noble metal high entropy oxide (HEO) catalysts on carbon fibers by rapid Joule heating and quenching is reported. Different compositions of ternary to senary (FeNiCoCrMnV) HEO nanoparticles show higher activity towards catalyzing the oxygen evolution reaction (OER) compared to a noble metal IrO2 catalyst. The synthesized HEO also show two orders of magnitude higher stability than IrO2, due to stronger carbide‐mediated intimacy with the substrate, activated through the OER process. Alloying elements Cr, Mn and V affect OER activity by promoting different oxidation states of the catalytically active TM (Fe, Ni and Co). Dissolution of less stable elements (Mn, V and Cr) leads to enhancements of OER activity. Dynamic structural and chemical perturbations of HEO oxide nanoparticles activate under OER conditions, leading to enlargement in ECSA by forming mixed single atom catalysts and ultra‐fine oxyhydroxide nanoparticles HEOs. In situ structural and morphological perturbations that occur during an electrocatalytic reaction process, yield an ever‐improving catalyst, and an exceptionally intimate interaction with catalyst‐support for ultra‐prolonged operations. A revolutionary nanomaterials synthesis strategy overcomes thermodynamic governing rules, produces novel chemistries at a millionfold greater throughput rate than conventional methods.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202200742</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alloying elements ; Aqueous electrolytes ; Carbon fibers ; Catalytic activity ; Chemical activity ; chemical reconstruction ; Chemical synthesis ; Dynamic stability ; Entropy ; High entropy alloys ; high entropy oxides ; high‐throughput synthesis ; hydrogen production ; Manganese ; Nanoalloys ; Nanomaterials ; Nanoparticles ; Noble metals ; non‐noble metal catalysts ; Ohmic dissipation ; Ostwald ripening ; Oxidation ; oxygen evolution reaction ; Oxygen evolution reactions ; Perturbation ; Resistance heating ; Single atom catalysts ; structural reconstruction ; Substrates ; Water splitting</subject><ispartof>Advanced energy materials, 2022-09, Vol.12 (35), p.n/a</ispartof><rights>2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4232-964ff8a00b08b282769ad758b3f4c2610f29e48389f4106a6922705bbd52f9143</citedby><cites>FETCH-LOGICAL-c4232-964ff8a00b08b282769ad758b3f4c2610f29e48389f4106a6922705bbd52f9143</cites><orcidid>0000-0002-7841-8058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202200742$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202200742$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Abdelhafiz, Ali</creatorcontrib><creatorcontrib>Wang, Baoming</creatorcontrib><creatorcontrib>Harutyunyan, Avetik R.</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><title>Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction</title><title>Advanced energy materials</title><description>Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high entropy alloy nanoparticles, which later transform to oxide/hydroxide nanoparticles upon use in aqueous electrolytes. Herein, an in situ synthesis of non‐noble metal high entropy oxide (HEO) catalysts on carbon fibers by rapid Joule heating and quenching is reported. Different compositions of ternary to senary (FeNiCoCrMnV) HEO nanoparticles show higher activity towards catalyzing the oxygen evolution reaction (OER) compared to a noble metal IrO2 catalyst. The synthesized HEO also show two orders of magnitude higher stability than IrO2, due to stronger carbide‐mediated intimacy with the substrate, activated through the OER process. Alloying elements Cr, Mn and V affect OER activity by promoting different oxidation states of the catalytically active TM (Fe, Ni and Co). Dissolution of less stable elements (Mn, V and Cr) leads to enhancements of OER activity. Dynamic structural and chemical perturbations of HEO oxide nanoparticles activate under OER conditions, leading to enlargement in ECSA by forming mixed single atom catalysts and ultra‐fine oxyhydroxide nanoparticles HEOs. In situ structural and morphological perturbations that occur during an electrocatalytic reaction process, yield an ever‐improving catalyst, and an exceptionally intimate interaction with catalyst‐support for ultra‐prolonged operations. A revolutionary nanomaterials synthesis strategy overcomes thermodynamic governing rules, produces novel chemistries at a millionfold greater throughput rate than conventional methods.</description><subject>Alloying elements</subject><subject>Aqueous electrolytes</subject><subject>Carbon fibers</subject><subject>Catalytic activity</subject><subject>Chemical activity</subject><subject>chemical reconstruction</subject><subject>Chemical synthesis</subject><subject>Dynamic stability</subject><subject>Entropy</subject><subject>High entropy alloys</subject><subject>high entropy oxides</subject><subject>high‐throughput synthesis</subject><subject>hydrogen production</subject><subject>Manganese</subject><subject>Nanoalloys</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>non‐noble metal catalysts</subject><subject>Ohmic dissipation</subject><subject>Ostwald ripening</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Perturbation</subject><subject>Resistance heating</subject><subject>Single atom catalysts</subject><subject>structural reconstruction</subject><subject>Substrates</subject><subject>Water splitting</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctOwzAQRSMEEgi6ZW2JdYo9cfNgV0J5SAWkFtaRk9iNIbWL7RTybfwcbovKEm_smbn3jOQbBOcEDwnGcMm4Wg4BA2CcUDgITkhMaBinFB_u3xEcBwNr37A_NCM4ik6C75yZUruGmyVr0bzR1Tua98o3rLRIC3QvFw2aKGf0qkfPX7LmKGeOtb119grd9IotZYXmznSV64xnMFWjvOG-64sZr7Sy26HUCl1rbZ1UC-T5vxjn3WM_XUvXb71zx0rZbiqnP5mp_dJ-wRWarHXbbSkzzra4s-BIsNbywe99GrzeTl7y-3D6fPeQj6dhRSGCMIupECnDuMRpCSkkccbqZJSWkaAVxAQLyDhNozQTlOCYxRlAgkdlWY9AZIRGp8HFjrsy-qPj1hVvujPKrywgIRRG_jsTrxruVJXR1houipWRS2b6guBik1GxyajYZ-QN2c7wKVve_6MuxpOnxz_vD6ErmLg</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Abdelhafiz, Ali</creator><creator>Wang, Baoming</creator><creator>Harutyunyan, Avetik R.</creator><creator>Li, Ju</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7841-8058</orcidid></search><sort><creationdate>20220901</creationdate><title>Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction</title><author>Abdelhafiz, Ali ; Wang, Baoming ; Harutyunyan, Avetik R. ; Li, Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4232-964ff8a00b08b282769ad758b3f4c2610f29e48389f4106a6922705bbd52f9143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloying elements</topic><topic>Aqueous electrolytes</topic><topic>Carbon fibers</topic><topic>Catalytic activity</topic><topic>Chemical activity</topic><topic>chemical reconstruction</topic><topic>Chemical synthesis</topic><topic>Dynamic stability</topic><topic>Entropy</topic><topic>High entropy alloys</topic><topic>high entropy oxides</topic><topic>high‐throughput synthesis</topic><topic>hydrogen production</topic><topic>Manganese</topic><topic>Nanoalloys</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>non‐noble metal catalysts</topic><topic>Ohmic dissipation</topic><topic>Ostwald ripening</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Perturbation</topic><topic>Resistance heating</topic><topic>Single atom catalysts</topic><topic>structural reconstruction</topic><topic>Substrates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelhafiz, Ali</creatorcontrib><creatorcontrib>Wang, Baoming</creatorcontrib><creatorcontrib>Harutyunyan, Avetik R.</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelhafiz, Ali</au><au>Wang, Baoming</au><au>Harutyunyan, Avetik R.</au><au>Li, Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction</atitle><jtitle>Advanced energy materials</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>35</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high entropy alloy nanoparticles, which later transform to oxide/hydroxide nanoparticles upon use in aqueous electrolytes. Herein, an in situ synthesis of non‐noble metal high entropy oxide (HEO) catalysts on carbon fibers by rapid Joule heating and quenching is reported. Different compositions of ternary to senary (FeNiCoCrMnV) HEO nanoparticles show higher activity towards catalyzing the oxygen evolution reaction (OER) compared to a noble metal IrO2 catalyst. The synthesized HEO also show two orders of magnitude higher stability than IrO2, due to stronger carbide‐mediated intimacy with the substrate, activated through the OER process. Alloying elements Cr, Mn and V affect OER activity by promoting different oxidation states of the catalytically active TM (Fe, Ni and Co). Dissolution of less stable elements (Mn, V and Cr) leads to enhancements of OER activity. Dynamic structural and chemical perturbations of HEO oxide nanoparticles activate under OER conditions, leading to enlargement in ECSA by forming mixed single atom catalysts and ultra‐fine oxyhydroxide nanoparticles HEOs. In situ structural and morphological perturbations that occur during an electrocatalytic reaction process, yield an ever‐improving catalyst, and an exceptionally intimate interaction with catalyst‐support for ultra‐prolonged operations. A revolutionary nanomaterials synthesis strategy overcomes thermodynamic governing rules, produces novel chemistries at a millionfold greater throughput rate than conventional methods.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202200742</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7841-8058</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2022-09, Vol.12 (35), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_2714250047
source Wiley Online Library Journals Frontfile Complete
subjects Alloying elements
Aqueous electrolytes
Carbon fibers
Catalytic activity
Chemical activity
chemical reconstruction
Chemical synthesis
Dynamic stability
Entropy
High entropy alloys
high entropy oxides
high‐throughput synthesis
hydrogen production
Manganese
Nanoalloys
Nanomaterials
Nanoparticles
Noble metals
non‐noble metal catalysts
Ohmic dissipation
Ostwald ripening
Oxidation
oxygen evolution reaction
Oxygen evolution reactions
Perturbation
Resistance heating
Single atom catalysts
structural reconstruction
Substrates
Water splitting
title Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbothermal%20Shock%20Synthesis%20of%20High%20Entropy%20Oxide%20Catalysts:%20Dynamic%20Structural%20and%20Chemical%20Reconstruction%20Boosting%20the%20Catalytic%20Activity%20and%20Stability%20toward%20Oxygen%20Evolution%20Reaction&rft.jtitle=Advanced%20energy%20materials&rft.au=Abdelhafiz,%20Ali&rft.date=2022-09-01&rft.volume=12&rft.issue=35&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202200742&rft_dat=%3Cproquest_cross%3E2714250047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714250047&rft_id=info:pmid/&rfr_iscdi=true