Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction
Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high en...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2022-09, Vol.12 (35), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 35 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 12 |
creator | Abdelhafiz, Ali Wang, Baoming Harutyunyan, Avetik R. Li, Ju |
description | Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high entropy alloy nanoparticles, which later transform to oxide/hydroxide nanoparticles upon use in aqueous electrolytes. Herein, an in situ synthesis of non‐noble metal high entropy oxide (HEO) catalysts on carbon fibers by rapid Joule heating and quenching is reported. Different compositions of ternary to senary (FeNiCoCrMnV) HEO nanoparticles show higher activity towards catalyzing the oxygen evolution reaction (OER) compared to a noble metal IrO2 catalyst. The synthesized HEO also show two orders of magnitude higher stability than IrO2, due to stronger carbide‐mediated intimacy with the substrate, activated through the OER process. Alloying elements Cr, Mn and V affect OER activity by promoting different oxidation states of the catalytically active TM (Fe, Ni and Co). Dissolution of less stable elements (Mn, V and Cr) leads to enhancements of OER activity. Dynamic structural and chemical perturbations of HEO oxide nanoparticles activate under OER conditions, leading to enlargement in ECSA by forming mixed single atom catalysts and ultra‐fine oxyhydroxide nanoparticles HEOs.
In situ structural and morphological perturbations that occur during an electrocatalytic reaction process, yield an ever‐improving catalyst, and an exceptionally intimate interaction with catalyst‐support for ultra‐prolonged operations. A revolutionary nanomaterials synthesis strategy overcomes thermodynamic governing rules, produces novel chemistries at a millionfold greater throughput rate than conventional methods. |
doi_str_mv | 10.1002/aenm.202200742 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2714250047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714250047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4232-964ff8a00b08b282769ad758b3f4c2610f29e48389f4106a6922705bbd52f9143</originalsourceid><addsrcrecordid>eNqFkctOwzAQRSMEEgi6ZW2JdYo9cfNgV0J5SAWkFtaRk9iNIbWL7RTybfwcbovKEm_smbn3jOQbBOcEDwnGcMm4Wg4BA2CcUDgITkhMaBinFB_u3xEcBwNr37A_NCM4ik6C75yZUruGmyVr0bzR1Tua98o3rLRIC3QvFw2aKGf0qkfPX7LmKGeOtb119grd9IotZYXmznSV64xnMFWjvOG-64sZr7Sy26HUCl1rbZ1UC-T5vxjn3WM_XUvXb71zx0rZbiqnP5mp_dJ-wRWarHXbbSkzzra4s-BIsNbywe99GrzeTl7y-3D6fPeQj6dhRSGCMIupECnDuMRpCSkkccbqZJSWkaAVxAQLyDhNozQTlOCYxRlAgkdlWY9AZIRGp8HFjrsy-qPj1hVvujPKrywgIRRG_jsTrxruVJXR1houipWRS2b6guBik1GxyajYZ-QN2c7wKVve_6MuxpOnxz_vD6ErmLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714250047</pqid></control><display><type>article</type><title>Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Abdelhafiz, Ali ; Wang, Baoming ; Harutyunyan, Avetik R. ; Li, Ju</creator><creatorcontrib>Abdelhafiz, Ali ; Wang, Baoming ; Harutyunyan, Avetik R. ; Li, Ju</creatorcontrib><description>Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high entropy alloy nanoparticles, which later transform to oxide/hydroxide nanoparticles upon use in aqueous electrolytes. Herein, an in situ synthesis of non‐noble metal high entropy oxide (HEO) catalysts on carbon fibers by rapid Joule heating and quenching is reported. Different compositions of ternary to senary (FeNiCoCrMnV) HEO nanoparticles show higher activity towards catalyzing the oxygen evolution reaction (OER) compared to a noble metal IrO2 catalyst. The synthesized HEO also show two orders of magnitude higher stability than IrO2, due to stronger carbide‐mediated intimacy with the substrate, activated through the OER process. Alloying elements Cr, Mn and V affect OER activity by promoting different oxidation states of the catalytically active TM (Fe, Ni and Co). Dissolution of less stable elements (Mn, V and Cr) leads to enhancements of OER activity. Dynamic structural and chemical perturbations of HEO oxide nanoparticles activate under OER conditions, leading to enlargement in ECSA by forming mixed single atom catalysts and ultra‐fine oxyhydroxide nanoparticles HEOs.
In situ structural and morphological perturbations that occur during an electrocatalytic reaction process, yield an ever‐improving catalyst, and an exceptionally intimate interaction with catalyst‐support for ultra‐prolonged operations. A revolutionary nanomaterials synthesis strategy overcomes thermodynamic governing rules, produces novel chemistries at a millionfold greater throughput rate than conventional methods.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202200742</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alloying elements ; Aqueous electrolytes ; Carbon fibers ; Catalytic activity ; Chemical activity ; chemical reconstruction ; Chemical synthesis ; Dynamic stability ; Entropy ; High entropy alloys ; high entropy oxides ; high‐throughput synthesis ; hydrogen production ; Manganese ; Nanoalloys ; Nanomaterials ; Nanoparticles ; Noble metals ; non‐noble metal catalysts ; Ohmic dissipation ; Ostwald ripening ; Oxidation ; oxygen evolution reaction ; Oxygen evolution reactions ; Perturbation ; Resistance heating ; Single atom catalysts ; structural reconstruction ; Substrates ; Water splitting</subject><ispartof>Advanced energy materials, 2022-09, Vol.12 (35), p.n/a</ispartof><rights>2022 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4232-964ff8a00b08b282769ad758b3f4c2610f29e48389f4106a6922705bbd52f9143</citedby><cites>FETCH-LOGICAL-c4232-964ff8a00b08b282769ad758b3f4c2610f29e48389f4106a6922705bbd52f9143</cites><orcidid>0000-0002-7841-8058</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.202200742$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.202200742$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Abdelhafiz, Ali</creatorcontrib><creatorcontrib>Wang, Baoming</creatorcontrib><creatorcontrib>Harutyunyan, Avetik R.</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><title>Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction</title><title>Advanced energy materials</title><description>Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high entropy alloy nanoparticles, which later transform to oxide/hydroxide nanoparticles upon use in aqueous electrolytes. Herein, an in situ synthesis of non‐noble metal high entropy oxide (HEO) catalysts on carbon fibers by rapid Joule heating and quenching is reported. Different compositions of ternary to senary (FeNiCoCrMnV) HEO nanoparticles show higher activity towards catalyzing the oxygen evolution reaction (OER) compared to a noble metal IrO2 catalyst. The synthesized HEO also show two orders of magnitude higher stability than IrO2, due to stronger carbide‐mediated intimacy with the substrate, activated through the OER process. Alloying elements Cr, Mn and V affect OER activity by promoting different oxidation states of the catalytically active TM (Fe, Ni and Co). Dissolution of less stable elements (Mn, V and Cr) leads to enhancements of OER activity. Dynamic structural and chemical perturbations of HEO oxide nanoparticles activate under OER conditions, leading to enlargement in ECSA by forming mixed single atom catalysts and ultra‐fine oxyhydroxide nanoparticles HEOs.
In situ structural and morphological perturbations that occur during an electrocatalytic reaction process, yield an ever‐improving catalyst, and an exceptionally intimate interaction with catalyst‐support for ultra‐prolonged operations. A revolutionary nanomaterials synthesis strategy overcomes thermodynamic governing rules, produces novel chemistries at a millionfold greater throughput rate than conventional methods.</description><subject>Alloying elements</subject><subject>Aqueous electrolytes</subject><subject>Carbon fibers</subject><subject>Catalytic activity</subject><subject>Chemical activity</subject><subject>chemical reconstruction</subject><subject>Chemical synthesis</subject><subject>Dynamic stability</subject><subject>Entropy</subject><subject>High entropy alloys</subject><subject>high entropy oxides</subject><subject>high‐throughput synthesis</subject><subject>hydrogen production</subject><subject>Manganese</subject><subject>Nanoalloys</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Noble metals</subject><subject>non‐noble metal catalysts</subject><subject>Ohmic dissipation</subject><subject>Ostwald ripening</subject><subject>Oxidation</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Perturbation</subject><subject>Resistance heating</subject><subject>Single atom catalysts</subject><subject>structural reconstruction</subject><subject>Substrates</subject><subject>Water splitting</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctOwzAQRSMEEgi6ZW2JdYo9cfNgV0J5SAWkFtaRk9iNIbWL7RTybfwcbovKEm_smbn3jOQbBOcEDwnGcMm4Wg4BA2CcUDgITkhMaBinFB_u3xEcBwNr37A_NCM4ik6C75yZUruGmyVr0bzR1Tua98o3rLRIC3QvFw2aKGf0qkfPX7LmKGeOtb119grd9IotZYXmznSV64xnMFWjvOG-64sZr7Sy26HUCl1rbZ1UC-T5vxjn3WM_XUvXb71zx0rZbiqnP5mp_dJ-wRWarHXbbSkzzra4s-BIsNbywe99GrzeTl7y-3D6fPeQj6dhRSGCMIupECnDuMRpCSkkccbqZJSWkaAVxAQLyDhNozQTlOCYxRlAgkdlWY9AZIRGp8HFjrsy-qPj1hVvujPKrywgIRRG_jsTrxruVJXR1houipWRS2b6guBik1GxyajYZ-QN2c7wKVve_6MuxpOnxz_vD6ErmLg</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Abdelhafiz, Ali</creator><creator>Wang, Baoming</creator><creator>Harutyunyan, Avetik R.</creator><creator>Li, Ju</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7841-8058</orcidid></search><sort><creationdate>20220901</creationdate><title>Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction</title><author>Abdelhafiz, Ali ; Wang, Baoming ; Harutyunyan, Avetik R. ; Li, Ju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4232-964ff8a00b08b282769ad758b3f4c2610f29e48389f4106a6922705bbd52f9143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alloying elements</topic><topic>Aqueous electrolytes</topic><topic>Carbon fibers</topic><topic>Catalytic activity</topic><topic>Chemical activity</topic><topic>chemical reconstruction</topic><topic>Chemical synthesis</topic><topic>Dynamic stability</topic><topic>Entropy</topic><topic>High entropy alloys</topic><topic>high entropy oxides</topic><topic>high‐throughput synthesis</topic><topic>hydrogen production</topic><topic>Manganese</topic><topic>Nanoalloys</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Noble metals</topic><topic>non‐noble metal catalysts</topic><topic>Ohmic dissipation</topic><topic>Ostwald ripening</topic><topic>Oxidation</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Perturbation</topic><topic>Resistance heating</topic><topic>Single atom catalysts</topic><topic>structural reconstruction</topic><topic>Substrates</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdelhafiz, Ali</creatorcontrib><creatorcontrib>Wang, Baoming</creatorcontrib><creatorcontrib>Harutyunyan, Avetik R.</creatorcontrib><creatorcontrib>Li, Ju</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelhafiz, Ali</au><au>Wang, Baoming</au><au>Harutyunyan, Avetik R.</au><au>Li, Ju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction</atitle><jtitle>Advanced energy materials</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>12</volume><issue>35</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Mixed transition‐metals (TM) based catalysts have shown huge promise for water splitting. Conventional synthesis of nanomaterials is strongly constrained by room‐temperature equilibria and Ostwald ripening. Ultra‐fast temperature cycling enables the synthesis of metastable metallic phases of high entropy alloy nanoparticles, which later transform to oxide/hydroxide nanoparticles upon use in aqueous electrolytes. Herein, an in situ synthesis of non‐noble metal high entropy oxide (HEO) catalysts on carbon fibers by rapid Joule heating and quenching is reported. Different compositions of ternary to senary (FeNiCoCrMnV) HEO nanoparticles show higher activity towards catalyzing the oxygen evolution reaction (OER) compared to a noble metal IrO2 catalyst. The synthesized HEO also show two orders of magnitude higher stability than IrO2, due to stronger carbide‐mediated intimacy with the substrate, activated through the OER process. Alloying elements Cr, Mn and V affect OER activity by promoting different oxidation states of the catalytically active TM (Fe, Ni and Co). Dissolution of less stable elements (Mn, V and Cr) leads to enhancements of OER activity. Dynamic structural and chemical perturbations of HEO oxide nanoparticles activate under OER conditions, leading to enlargement in ECSA by forming mixed single atom catalysts and ultra‐fine oxyhydroxide nanoparticles HEOs.
In situ structural and morphological perturbations that occur during an electrocatalytic reaction process, yield an ever‐improving catalyst, and an exceptionally intimate interaction with catalyst‐support for ultra‐prolonged operations. A revolutionary nanomaterials synthesis strategy overcomes thermodynamic governing rules, produces novel chemistries at a millionfold greater throughput rate than conventional methods.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.202200742</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7841-8058</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2022-09, Vol.12 (35), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2714250047 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alloying elements Aqueous electrolytes Carbon fibers Catalytic activity Chemical activity chemical reconstruction Chemical synthesis Dynamic stability Entropy High entropy alloys high entropy oxides high‐throughput synthesis hydrogen production Manganese Nanoalloys Nanomaterials Nanoparticles Noble metals non‐noble metal catalysts Ohmic dissipation Ostwald ripening Oxidation oxygen evolution reaction Oxygen evolution reactions Perturbation Resistance heating Single atom catalysts structural reconstruction Substrates Water splitting |
title | Carbothermal Shock Synthesis of High Entropy Oxide Catalysts: Dynamic Structural and Chemical Reconstruction Boosting the Catalytic Activity and Stability toward Oxygen Evolution Reaction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbothermal%20Shock%20Synthesis%20of%20High%20Entropy%20Oxide%20Catalysts:%20Dynamic%20Structural%20and%20Chemical%20Reconstruction%20Boosting%20the%20Catalytic%20Activity%20and%20Stability%20toward%20Oxygen%20Evolution%20Reaction&rft.jtitle=Advanced%20energy%20materials&rft.au=Abdelhafiz,%20Ali&rft.date=2022-09-01&rft.volume=12&rft.issue=35&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202200742&rft_dat=%3Cproquest_cross%3E2714250047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714250047&rft_id=info:pmid/&rfr_iscdi=true |