Comment on “Migration-assisted, moisture gradient process for ultrafast, continuous CO2 capture from dilute sources at ambient conditions” by A. Prajapati, R. Sartape, T. Rojas, N. K. Dandu, P. Dhakal, A. S. Thorat, J. Xie, I. Bessa, M. T. Galante, M. H. S. Andrade, R. T. Somich, M. V. Rebouças, G. T. Hutras, N. Diniz, A. T. Ngo, J. Shah and M. R. Singh, Energy Environ. Sci., 2022, 15, 680
R&D efforts on carbon capture and storage (CCS) are gaining unprecedented momentum in the context of the current climate crisis. A growing body of work is proposing new methods to extract this greenhouse gas from flue gases or directly from the air. The title paper, published in this Journal, de...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2022-09, Vol.15 (9), p.3991-3993 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3993 |
---|---|
container_issue | 9 |
container_start_page | 3991 |
container_title | Energy & environmental science |
container_volume | 15 |
creator | Casado, Juan |
description | R&D efforts on carbon capture and storage (CCS) are gaining unprecedented momentum in the context of the current climate crisis. A growing body of work is proposing new methods to extract this greenhouse gas from flue gases or directly from the air. The title paper, published in this Journal, describes one electrochemically driven process to capture and separate CO2 from dilute sources by establishing a water gradient across an anion exchange membrane (AEM) that separates the organic solvent and an aqueous solution. The organic medium is ethylene glycol saturated with KOH, which captures CO2 and produces a high concentration of HCO3− which migrates to the aqueous side, where bicarbonate is converted back to CO2. Here we comment on this new process and provide several reasons we consider that, although interesting from an academic point of view, it lacks practical feasibility on an industrial scale. We also point out some inconsistencies in the article. |
doi_str_mv | 10.1039/d2ee00555g |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2714070983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714070983</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-e1f3a4c0d1dcb3f33f75087890ea2e306ac1471bd64bc4c6159b306292dc00183</originalsourceid><addsrcrecordid>eNo1UU1uEzEUHhBIlMKGEzyJrWNsz19mWdKSFPqnJiB21RuPJ3HI2MH2IJVVL8ANYM1BuElPgmcKq_f7_Ty9JHnFGeUsrd40QinG8jxfP04OeJlnk7xkxZP_eVGJZ8lz77eMFYKV1cGjHzPbdcoEsAbu736e67XDoK2ZoPfaB9UQ6GxMeqcgjho97O6dlcp7aK2DfhcctugDAWlN0Ka3vYfZpQCJ-xHWOttBo3d9UOBt7yIUMAB29UgWUY0eJP393S-ob-GIwpXDLe6jEQLXFJboAu4VgRWFa7tFT-CCwgcKx2iansBVzDb4BXdkwC4prDY2XkHgPYXPOuJOKbyNfpHAOR1I5rhDE9RYLkbEkWnicWqUiwtL22m5Geefoqaqbf_n96A7H8eLPt784OJYG_191I39i7UdRZcb3ED0NuAH_9qsI9mJUW59G8M37ayJbakpAcGEIMBzAsWUvUietrjz6uW_eJh8fHeymi0mZ5fz09nR2WTPeRomircpZpI1vJF12qZpW-ZsWk4rplColBUoeVbyuimyWmay4HlVx66oRCMZ49P0MHn9wBs_-bVXPtxs42NMlLwRJc9Yyappmv4FgXuyoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714070983</pqid></control><display><type>article</type><title>Comment on “Migration-assisted, moisture gradient process for ultrafast, continuous CO2 capture from dilute sources at ambient conditions” by A. Prajapati, R. Sartape, T. Rojas, N. K. Dandu, P. Dhakal, A. S. Thorat, J. Xie, I. Bessa, M. T. Galante, M. H. S. Andrade, R. T. Somich, M. V. Rebouças, G. T. Hutras, N. Diniz, A. T. Ngo, J. Shah and M. R. Singh, Energy Environ. Sci., 2022, 15, 680</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Casado, Juan</creator><creatorcontrib>Casado, Juan</creatorcontrib><description>R&D efforts on carbon capture and storage (CCS) are gaining unprecedented momentum in the context of the current climate crisis. A growing body of work is proposing new methods to extract this greenhouse gas from flue gases or directly from the air. The title paper, published in this Journal, describes one electrochemically driven process to capture and separate CO2 from dilute sources by establishing a water gradient across an anion exchange membrane (AEM) that separates the organic solvent and an aqueous solution. The organic medium is ethylene glycol saturated with KOH, which captures CO2 and produces a high concentration of HCO3− which migrates to the aqueous side, where bicarbonate is converted back to CO2. Here we comment on this new process and provide several reasons we consider that, although interesting from an academic point of view, it lacks practical feasibility on an industrial scale. We also point out some inconsistencies in the article.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/d2ee00555g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anion exchange ; Anion exchanging ; Aqueous solutions ; Bicarbonates ; Carbon dioxide ; Carbon sequestration ; Dilution ; Ethylene glycol ; Flue gas ; Greenhouse gases ; Moisture effects ; Moisture gradient</subject><ispartof>Energy & environmental science, 2022-09, Vol.15 (9), p.3991-3993</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Casado, Juan</creatorcontrib><title>Comment on “Migration-assisted, moisture gradient process for ultrafast, continuous CO2 capture from dilute sources at ambient conditions” by A. Prajapati, R. Sartape, T. Rojas, N. K. Dandu, P. Dhakal, A. S. Thorat, J. Xie, I. Bessa, M. T. Galante, M. H. S. Andrade, R. T. Somich, M. V. Rebouças, G. T. Hutras, N. Diniz, A. T. Ngo, J. Shah and M. R. Singh, Energy Environ. Sci., 2022, 15, 680</title><title>Energy & environmental science</title><description>R&D efforts on carbon capture and storage (CCS) are gaining unprecedented momentum in the context of the current climate crisis. A growing body of work is proposing new methods to extract this greenhouse gas from flue gases or directly from the air. The title paper, published in this Journal, describes one electrochemically driven process to capture and separate CO2 from dilute sources by establishing a water gradient across an anion exchange membrane (AEM) that separates the organic solvent and an aqueous solution. The organic medium is ethylene glycol saturated with KOH, which captures CO2 and produces a high concentration of HCO3− which migrates to the aqueous side, where bicarbonate is converted back to CO2. Here we comment on this new process and provide several reasons we consider that, although interesting from an academic point of view, it lacks practical feasibility on an industrial scale. We also point out some inconsistencies in the article.</description><subject>Anion exchange</subject><subject>Anion exchanging</subject><subject>Aqueous solutions</subject><subject>Bicarbonates</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Dilution</subject><subject>Ethylene glycol</subject><subject>Flue gas</subject><subject>Greenhouse gases</subject><subject>Moisture effects</subject><subject>Moisture gradient</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo1UU1uEzEUHhBIlMKGEzyJrWNsz19mWdKSFPqnJiB21RuPJ3HI2MH2IJVVL8ANYM1BuElPgmcKq_f7_Ty9JHnFGeUsrd40QinG8jxfP04OeJlnk7xkxZP_eVGJZ8lz77eMFYKV1cGjHzPbdcoEsAbu736e67XDoK2ZoPfaB9UQ6GxMeqcgjho97O6dlcp7aK2DfhcctugDAWlN0Ka3vYfZpQCJ-xHWOttBo3d9UOBt7yIUMAB29UgWUY0eJP393S-ob-GIwpXDLe6jEQLXFJboAu4VgRWFa7tFT-CCwgcKx2iansBVzDb4BXdkwC4prDY2XkHgPYXPOuJOKbyNfpHAOR1I5rhDE9RYLkbEkWnicWqUiwtL22m5Geefoqaqbf_n96A7H8eLPt784OJYG_191I39i7UdRZcb3ED0NuAH_9qsI9mJUW59G8M37ayJbakpAcGEIMBzAsWUvUietrjz6uW_eJh8fHeymi0mZ5fz09nR2WTPeRomircpZpI1vJF12qZpW-ZsWk4rplColBUoeVbyuimyWmay4HlVx66oRCMZ49P0MHn9wBs_-bVXPtxs42NMlLwRJc9Yyappmv4FgXuyoA</recordid><startdate>20220914</startdate><enddate>20220914</enddate><creator>Casado, Juan</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20220914</creationdate><title>Comment on “Migration-assisted, moisture gradient process for ultrafast, continuous CO2 capture from dilute sources at ambient conditions” by A. Prajapati, R. Sartape, T. Rojas, N. K. Dandu, P. Dhakal, A. S. Thorat, J. Xie, I. Bessa, M. T. Galante, M. H. S. Andrade, R. T. Somich, M. V. Rebouças, G. T. Hutras, N. Diniz, A. T. Ngo, J. Shah and M. R. Singh, Energy Environ. Sci., 2022, 15, 680</title><author>Casado, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-e1f3a4c0d1dcb3f33f75087890ea2e306ac1471bd64bc4c6159b306292dc00183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anion exchange</topic><topic>Anion exchanging</topic><topic>Aqueous solutions</topic><topic>Bicarbonates</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Dilution</topic><topic>Ethylene glycol</topic><topic>Flue gas</topic><topic>Greenhouse gases</topic><topic>Moisture effects</topic><topic>Moisture gradient</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casado, Juan</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casado, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comment on “Migration-assisted, moisture gradient process for ultrafast, continuous CO2 capture from dilute sources at ambient conditions” by A. Prajapati, R. Sartape, T. Rojas, N. K. Dandu, P. Dhakal, A. S. Thorat, J. Xie, I. Bessa, M. T. Galante, M. H. S. Andrade, R. T. Somich, M. V. Rebouças, G. T. Hutras, N. Diniz, A. T. Ngo, J. Shah and M. R. Singh, Energy Environ. Sci., 2022, 15, 680</atitle><jtitle>Energy & environmental science</jtitle><date>2022-09-14</date><risdate>2022</risdate><volume>15</volume><issue>9</issue><spage>3991</spage><epage>3993</epage><pages>3991-3993</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>R&D efforts on carbon capture and storage (CCS) are gaining unprecedented momentum in the context of the current climate crisis. A growing body of work is proposing new methods to extract this greenhouse gas from flue gases or directly from the air. The title paper, published in this Journal, describes one electrochemically driven process to capture and separate CO2 from dilute sources by establishing a water gradient across an anion exchange membrane (AEM) that separates the organic solvent and an aqueous solution. The organic medium is ethylene glycol saturated with KOH, which captures CO2 and produces a high concentration of HCO3− which migrates to the aqueous side, where bicarbonate is converted back to CO2. Here we comment on this new process and provide several reasons we consider that, although interesting from an academic point of view, it lacks practical feasibility on an industrial scale. We also point out some inconsistencies in the article.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d2ee00555g</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2022-09, Vol.15 (9), p.3991-3993 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_proquest_journals_2714070983 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anion exchange Anion exchanging Aqueous solutions Bicarbonates Carbon dioxide Carbon sequestration Dilution Ethylene glycol Flue gas Greenhouse gases Moisture effects Moisture gradient |
title | Comment on “Migration-assisted, moisture gradient process for ultrafast, continuous CO2 capture from dilute sources at ambient conditions” by A. Prajapati, R. Sartape, T. Rojas, N. K. Dandu, P. Dhakal, A. S. Thorat, J. Xie, I. Bessa, M. T. Galante, M. H. S. Andrade, R. T. Somich, M. V. Rebouças, G. T. Hutras, N. Diniz, A. T. Ngo, J. Shah and M. R. Singh, Energy Environ. Sci., 2022, 15, 680 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comment%20on%20%E2%80%9CMigration-assisted,%20moisture%20gradient%20process%20for%20ultrafast,%20continuous%20CO2%20capture%20from%20dilute%20sources%20at%20ambient%20conditions%E2%80%9D%20by%20A.%20Prajapati,%20R.%20Sartape,%20T.%20Rojas,%20N.%20K.%20Dandu,%20P.%20Dhakal,%20A.%20S.%20Thorat,%20J.%20Xie,%20I.%20Bessa,%20M.%20T.%20Galante,%20M.%20H.%20S.%20Andrade,%20R.%20T.%20Somich,%20M.%20V.%20Rebou%C3%A7as,%20G.%20T.%20Hutras,%20N.%20Diniz,%20A.%20T.%20Ngo,%20J.%20Shah%20and%20M.%20R.%20Singh,%20Energy%20Environ.%20Sci.,%202022,%2015,%20680&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Casado,%20Juan&rft.date=2022-09-14&rft.volume=15&rft.issue=9&rft.spage=3991&rft.epage=3993&rft.pages=3991-3993&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/d2ee00555g&rft_dat=%3Cproquest%3E2714070983%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714070983&rft_id=info:pmid/&rfr_iscdi=true |