Boosting C2H6/C2H4 separation in scalable metal‐organic frameworks through pore engineering
The development of ethane (C2H6)‐selective adsorbents for ethylene (C2H4) purification, although challenging, is of prime industrial importance. Pillared‐layer metal‐organic frameworks (MOFs) possess facilely tunable pore structure and functionality, which means they have excellent potential for hig...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2022-10, Vol.68 (10), p.n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 10 |
container_start_page | |
container_title | AIChE journal |
container_volume | 68 |
creator | Zhang, Peng‐Dan Zhang, Xin Wu, Xue‐Qian Xu, Zi‐Chao Li, Jian‐Rong |
description | The development of ethane (C2H6)‐selective adsorbents for ethylene (C2H4) purification, although challenging, is of prime industrial importance. Pillared‐layer metal‐organic frameworks (MOFs) possess facilely tunable pore structure and functionality, which means they have excellent potential for high‐performance C2H6/C2H4 separation applications. Herein, we report a family of isostructural pillared‐layer MOFs with various metal centers M and co‐ligands L, M2(D‐cam)4L2 (denoted M‐cam‐L; M = Cu, Co, Ni; L = pyz, apyz, dabco), with a variety of pore surface properties. All of the M‐cam‐L materials exhibit preferential adsorption for C2H6 over C2H4. In particular, Ni‐cam‐pyz exhibits the highest C2H6 capture capacity (68.75 cm3 g−1 at 1 bar and 298 K), Cu‐cam‐dabco possesses the greatest C2H6/C2H4 adsorption selectivity (2.3), and the lowest isosteric heat of adsorption is demonstrated for Cu‐cam‐pyz (20.1 kJ mol−1). Dynamic column breakthrough experiments also confirmed the excellent separation performance of M‐cam‐pyz and M‐cam‐dabco materials. The synthesis route of the M‐cam‐L materials is easily scaled‐up under laboratory conditions, and hence this class of MOFs is promising for practical C2H4 purification. |
doi_str_mv | 10.1002/aic.17752 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2714031880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714031880</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2232-f28872027dd75eab52bdefdc8527c81731e4881b5fdabeb848caa82dbd59543b3</originalsourceid><addsrcrecordid>eNotkEFOwzAQRS0EEqWw4AaWWKe1JzF2lyUCWqkSG1giy04mqUsaBztV1R1H4IychNCymT8z-vpfeoTccjbhjMHUuGLCpRRwRkZcZDIRMybOyYgxxpPhwS_JVYyb4QKpYETeH7yPvWtrmsPifjqMjEbsTDC98y11LY2FaYxtkG6xN83P17cPtWldQatgtrj34SPSfh38rl7Tzgek2NauRQxD6DW5qEwT8eZfx-Tt6fE1XySrl-dlPl8lHUAKSQVKSWAgy1IKNFaALbEqCyVAForLlGOmFLeiKo1FqzJVGKOgtKWYiSy16ZjcnXK74D93GHu98bvQDpUaJM9YypVig2t6cu1dgwfdBbc14aA503_o9IBOH9Hp-TI_LukvyZZkaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714031880</pqid></control><display><type>article</type><title>Boosting C2H6/C2H4 separation in scalable metal‐organic frameworks through pore engineering</title><source>Access via Wiley Online Library</source><creator>Zhang, Peng‐Dan ; Zhang, Xin ; Wu, Xue‐Qian ; Xu, Zi‐Chao ; Li, Jian‐Rong</creator><creatorcontrib>Zhang, Peng‐Dan ; Zhang, Xin ; Wu, Xue‐Qian ; Xu, Zi‐Chao ; Li, Jian‐Rong</creatorcontrib><description>The development of ethane (C2H6)‐selective adsorbents for ethylene (C2H4) purification, although challenging, is of prime industrial importance. Pillared‐layer metal‐organic frameworks (MOFs) possess facilely tunable pore structure and functionality, which means they have excellent potential for high‐performance C2H6/C2H4 separation applications. Herein, we report a family of isostructural pillared‐layer MOFs with various metal centers M and co‐ligands L, M2(D‐cam)4L2 (denoted M‐cam‐L; M = Cu, Co, Ni; L = pyz, apyz, dabco), with a variety of pore surface properties. All of the M‐cam‐L materials exhibit preferential adsorption for C2H6 over C2H4. In particular, Ni‐cam‐pyz exhibits the highest C2H6 capture capacity (68.75 cm3 g−1 at 1 bar and 298 K), Cu‐cam‐dabco possesses the greatest C2H6/C2H4 adsorption selectivity (2.3), and the lowest isosteric heat of adsorption is demonstrated for Cu‐cam‐pyz (20.1 kJ mol−1). Dynamic column breakthrough experiments also confirmed the excellent separation performance of M‐cam‐pyz and M‐cam‐dabco materials. The synthesis route of the M‐cam‐L materials is easily scaled‐up under laboratory conditions, and hence this class of MOFs is promising for practical C2H4 purification.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.17752</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Adsorption ; C2H6/C2H4 separation ; Copper ; Ethane ; Heat of adsorption ; Metal-organic frameworks ; pillared‐layer ; pore engineering ; Purification ; scalable synthesis ; Selectivity ; Separation ; Surface properties</subject><ispartof>AIChE journal, 2022-10, Vol.68 (10), p.n/a</ispartof><rights>2022 American Institute of Chemical Engineers.</rights><rights>2022 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8101-8493 ; 0000-0001-9318-8839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.17752$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.17752$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Peng‐Dan</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Wu, Xue‐Qian</creatorcontrib><creatorcontrib>Xu, Zi‐Chao</creatorcontrib><creatorcontrib>Li, Jian‐Rong</creatorcontrib><title>Boosting C2H6/C2H4 separation in scalable metal‐organic frameworks through pore engineering</title><title>AIChE journal</title><description>The development of ethane (C2H6)‐selective adsorbents for ethylene (C2H4) purification, although challenging, is of prime industrial importance. Pillared‐layer metal‐organic frameworks (MOFs) possess facilely tunable pore structure and functionality, which means they have excellent potential for high‐performance C2H6/C2H4 separation applications. Herein, we report a family of isostructural pillared‐layer MOFs with various metal centers M and co‐ligands L, M2(D‐cam)4L2 (denoted M‐cam‐L; M = Cu, Co, Ni; L = pyz, apyz, dabco), with a variety of pore surface properties. All of the M‐cam‐L materials exhibit preferential adsorption for C2H6 over C2H4. In particular, Ni‐cam‐pyz exhibits the highest C2H6 capture capacity (68.75 cm3 g−1 at 1 bar and 298 K), Cu‐cam‐dabco possesses the greatest C2H6/C2H4 adsorption selectivity (2.3), and the lowest isosteric heat of adsorption is demonstrated for Cu‐cam‐pyz (20.1 kJ mol−1). Dynamic column breakthrough experiments also confirmed the excellent separation performance of M‐cam‐pyz and M‐cam‐dabco materials. The synthesis route of the M‐cam‐L materials is easily scaled‐up under laboratory conditions, and hence this class of MOFs is promising for practical C2H4 purification.</description><subject>Adsorption</subject><subject>C2H6/C2H4 separation</subject><subject>Copper</subject><subject>Ethane</subject><subject>Heat of adsorption</subject><subject>Metal-organic frameworks</subject><subject>pillared‐layer</subject><subject>pore engineering</subject><subject>Purification</subject><subject>scalable synthesis</subject><subject>Selectivity</subject><subject>Separation</subject><subject>Surface properties</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEFOwzAQRS0EEqWw4AaWWKe1JzF2lyUCWqkSG1giy04mqUsaBztV1R1H4IychNCymT8z-vpfeoTccjbhjMHUuGLCpRRwRkZcZDIRMybOyYgxxpPhwS_JVYyb4QKpYETeH7yPvWtrmsPifjqMjEbsTDC98y11LY2FaYxtkG6xN83P17cPtWldQatgtrj34SPSfh38rl7Tzgek2NauRQxD6DW5qEwT8eZfx-Tt6fE1XySrl-dlPl8lHUAKSQVKSWAgy1IKNFaALbEqCyVAForLlGOmFLeiKo1FqzJVGKOgtKWYiSy16ZjcnXK74D93GHu98bvQDpUaJM9YypVig2t6cu1dgwfdBbc14aA503_o9IBOH9Hp-TI_LukvyZZkaQ</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Zhang, Peng‐Dan</creator><creator>Zhang, Xin</creator><creator>Wu, Xue‐Qian</creator><creator>Xu, Zi‐Chao</creator><creator>Li, Jian‐Rong</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8101-8493</orcidid><orcidid>https://orcid.org/0000-0001-9318-8839</orcidid></search><sort><creationdate>202210</creationdate><title>Boosting C2H6/C2H4 separation in scalable metal‐organic frameworks through pore engineering</title><author>Zhang, Peng‐Dan ; Zhang, Xin ; Wu, Xue‐Qian ; Xu, Zi‐Chao ; Li, Jian‐Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2232-f28872027dd75eab52bdefdc8527c81731e4881b5fdabeb848caa82dbd59543b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>C2H6/C2H4 separation</topic><topic>Copper</topic><topic>Ethane</topic><topic>Heat of adsorption</topic><topic>Metal-organic frameworks</topic><topic>pillared‐layer</topic><topic>pore engineering</topic><topic>Purification</topic><topic>scalable synthesis</topic><topic>Selectivity</topic><topic>Separation</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Peng‐Dan</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Wu, Xue‐Qian</creatorcontrib><creatorcontrib>Xu, Zi‐Chao</creatorcontrib><creatorcontrib>Li, Jian‐Rong</creatorcontrib><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Peng‐Dan</au><au>Zhang, Xin</au><au>Wu, Xue‐Qian</au><au>Xu, Zi‐Chao</au><au>Li, Jian‐Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting C2H6/C2H4 separation in scalable metal‐organic frameworks through pore engineering</atitle><jtitle>AIChE journal</jtitle><date>2022-10</date><risdate>2022</risdate><volume>68</volume><issue>10</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>The development of ethane (C2H6)‐selective adsorbents for ethylene (C2H4) purification, although challenging, is of prime industrial importance. Pillared‐layer metal‐organic frameworks (MOFs) possess facilely tunable pore structure and functionality, which means they have excellent potential for high‐performance C2H6/C2H4 separation applications. Herein, we report a family of isostructural pillared‐layer MOFs with various metal centers M and co‐ligands L, M2(D‐cam)4L2 (denoted M‐cam‐L; M = Cu, Co, Ni; L = pyz, apyz, dabco), with a variety of pore surface properties. All of the M‐cam‐L materials exhibit preferential adsorption for C2H6 over C2H4. In particular, Ni‐cam‐pyz exhibits the highest C2H6 capture capacity (68.75 cm3 g−1 at 1 bar and 298 K), Cu‐cam‐dabco possesses the greatest C2H6/C2H4 adsorption selectivity (2.3), and the lowest isosteric heat of adsorption is demonstrated for Cu‐cam‐pyz (20.1 kJ mol−1). Dynamic column breakthrough experiments also confirmed the excellent separation performance of M‐cam‐pyz and M‐cam‐dabco materials. The synthesis route of the M‐cam‐L materials is easily scaled‐up under laboratory conditions, and hence this class of MOFs is promising for practical C2H4 purification.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.17752</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8101-8493</orcidid><orcidid>https://orcid.org/0000-0001-9318-8839</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2022-10, Vol.68 (10), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2714031880 |
source | Access via Wiley Online Library |
subjects | Adsorption C2H6/C2H4 separation Copper Ethane Heat of adsorption Metal-organic frameworks pillared‐layer pore engineering Purification scalable synthesis Selectivity Separation Surface properties |
title | Boosting C2H6/C2H4 separation in scalable metal‐organic frameworks through pore engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20C2H6/C2H4%20separation%20in%20scalable%20metal%E2%80%90organic%20frameworks%20through%20pore%20engineering&rft.jtitle=AIChE%20journal&rft.au=Zhang,%20Peng%E2%80%90Dan&rft.date=2022-10&rft.volume=68&rft.issue=10&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.17752&rft_dat=%3Cproquest_wiley%3E2714031880%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714031880&rft_id=info:pmid/&rfr_iscdi=true |