Boosting C2H6/C2H4 separation in scalable metal‐organic frameworks through pore engineering

The development of ethane (C2H6)‐selective adsorbents for ethylene (C2H4) purification, although challenging, is of prime industrial importance. Pillared‐layer metal‐organic frameworks (MOFs) possess facilely tunable pore structure and functionality, which means they have excellent potential for hig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2022-10, Vol.68 (10), p.n/a
Hauptverfasser: Zhang, Peng‐Dan, Zhang, Xin, Wu, Xue‐Qian, Xu, Zi‐Chao, Li, Jian‐Rong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title AIChE journal
container_volume 68
creator Zhang, Peng‐Dan
Zhang, Xin
Wu, Xue‐Qian
Xu, Zi‐Chao
Li, Jian‐Rong
description The development of ethane (C2H6)‐selective adsorbents for ethylene (C2H4) purification, although challenging, is of prime industrial importance. Pillared‐layer metal‐organic frameworks (MOFs) possess facilely tunable pore structure and functionality, which means they have excellent potential for high‐performance C2H6/C2H4 separation applications. Herein, we report a family of isostructural pillared‐layer MOFs with various metal centers M and co‐ligands L, M2(D‐cam)4L2 (denoted M‐cam‐L; M = Cu, Co, Ni; L = pyz, apyz, dabco), with a variety of pore surface properties. All of the M‐cam‐L materials exhibit preferential adsorption for C2H6 over C2H4. In particular, Ni‐cam‐pyz exhibits the highest C2H6 capture capacity (68.75 cm3 g−1 at 1 bar and 298 K), Cu‐cam‐dabco possesses the greatest C2H6/C2H4 adsorption selectivity (2.3), and the lowest isosteric heat of adsorption is demonstrated for Cu‐cam‐pyz (20.1 kJ mol−1). Dynamic column breakthrough experiments also confirmed the excellent separation performance of M‐cam‐pyz and M‐cam‐dabco materials. The synthesis route of the M‐cam‐L materials is easily scaled‐up under laboratory conditions, and hence this class of MOFs is promising for practical C2H4 purification.
doi_str_mv 10.1002/aic.17752
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2714031880</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2714031880</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2232-f28872027dd75eab52bdefdc8527c81731e4881b5fdabeb848caa82dbd59543b3</originalsourceid><addsrcrecordid>eNotkEFOwzAQRS0EEqWw4AaWWKe1JzF2lyUCWqkSG1giy04mqUsaBztV1R1H4IychNCymT8z-vpfeoTccjbhjMHUuGLCpRRwRkZcZDIRMybOyYgxxpPhwS_JVYyb4QKpYETeH7yPvWtrmsPifjqMjEbsTDC98y11LY2FaYxtkG6xN83P17cPtWldQatgtrj34SPSfh38rl7Tzgek2NauRQxD6DW5qEwT8eZfx-Tt6fE1XySrl-dlPl8lHUAKSQVKSWAgy1IKNFaALbEqCyVAForLlGOmFLeiKo1FqzJVGKOgtKWYiSy16ZjcnXK74D93GHu98bvQDpUaJM9YypVig2t6cu1dgwfdBbc14aA503_o9IBOH9Hp-TI_LukvyZZkaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2714031880</pqid></control><display><type>article</type><title>Boosting C2H6/C2H4 separation in scalable metal‐organic frameworks through pore engineering</title><source>Access via Wiley Online Library</source><creator>Zhang, Peng‐Dan ; Zhang, Xin ; Wu, Xue‐Qian ; Xu, Zi‐Chao ; Li, Jian‐Rong</creator><creatorcontrib>Zhang, Peng‐Dan ; Zhang, Xin ; Wu, Xue‐Qian ; Xu, Zi‐Chao ; Li, Jian‐Rong</creatorcontrib><description>The development of ethane (C2H6)‐selective adsorbents for ethylene (C2H4) purification, although challenging, is of prime industrial importance. Pillared‐layer metal‐organic frameworks (MOFs) possess facilely tunable pore structure and functionality, which means they have excellent potential for high‐performance C2H6/C2H4 separation applications. Herein, we report a family of isostructural pillared‐layer MOFs with various metal centers M and co‐ligands L, M2(D‐cam)4L2 (denoted M‐cam‐L; M = Cu, Co, Ni; L = pyz, apyz, dabco), with a variety of pore surface properties. All of the M‐cam‐L materials exhibit preferential adsorption for C2H6 over C2H4. In particular, Ni‐cam‐pyz exhibits the highest C2H6 capture capacity (68.75 cm3 g−1 at 1 bar and 298 K), Cu‐cam‐dabco possesses the greatest C2H6/C2H4 adsorption selectivity (2.3), and the lowest isosteric heat of adsorption is demonstrated for Cu‐cam‐pyz (20.1 kJ mol−1). Dynamic column breakthrough experiments also confirmed the excellent separation performance of M‐cam‐pyz and M‐cam‐dabco materials. The synthesis route of the M‐cam‐L materials is easily scaled‐up under laboratory conditions, and hence this class of MOFs is promising for practical C2H4 purification.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.17752</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Adsorption ; C2H6/C2H4 separation ; Copper ; Ethane ; Heat of adsorption ; Metal-organic frameworks ; pillared‐layer ; pore engineering ; Purification ; scalable synthesis ; Selectivity ; Separation ; Surface properties</subject><ispartof>AIChE journal, 2022-10, Vol.68 (10), p.n/a</ispartof><rights>2022 American Institute of Chemical Engineers.</rights><rights>2022 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-8101-8493 ; 0000-0001-9318-8839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.17752$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.17752$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Peng‐Dan</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Wu, Xue‐Qian</creatorcontrib><creatorcontrib>Xu, Zi‐Chao</creatorcontrib><creatorcontrib>Li, Jian‐Rong</creatorcontrib><title>Boosting C2H6/C2H4 separation in scalable metal‐organic frameworks through pore engineering</title><title>AIChE journal</title><description>The development of ethane (C2H6)‐selective adsorbents for ethylene (C2H4) purification, although challenging, is of prime industrial importance. Pillared‐layer metal‐organic frameworks (MOFs) possess facilely tunable pore structure and functionality, which means they have excellent potential for high‐performance C2H6/C2H4 separation applications. Herein, we report a family of isostructural pillared‐layer MOFs with various metal centers M and co‐ligands L, M2(D‐cam)4L2 (denoted M‐cam‐L; M = Cu, Co, Ni; L = pyz, apyz, dabco), with a variety of pore surface properties. All of the M‐cam‐L materials exhibit preferential adsorption for C2H6 over C2H4. In particular, Ni‐cam‐pyz exhibits the highest C2H6 capture capacity (68.75 cm3 g−1 at 1 bar and 298 K), Cu‐cam‐dabco possesses the greatest C2H6/C2H4 adsorption selectivity (2.3), and the lowest isosteric heat of adsorption is demonstrated for Cu‐cam‐pyz (20.1 kJ mol−1). Dynamic column breakthrough experiments also confirmed the excellent separation performance of M‐cam‐pyz and M‐cam‐dabco materials. The synthesis route of the M‐cam‐L materials is easily scaled‐up under laboratory conditions, and hence this class of MOFs is promising for practical C2H4 purification.</description><subject>Adsorption</subject><subject>C2H6/C2H4 separation</subject><subject>Copper</subject><subject>Ethane</subject><subject>Heat of adsorption</subject><subject>Metal-organic frameworks</subject><subject>pillared‐layer</subject><subject>pore engineering</subject><subject>Purification</subject><subject>scalable synthesis</subject><subject>Selectivity</subject><subject>Separation</subject><subject>Surface properties</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkEFOwzAQRS0EEqWw4AaWWKe1JzF2lyUCWqkSG1giy04mqUsaBztV1R1H4IychNCymT8z-vpfeoTccjbhjMHUuGLCpRRwRkZcZDIRMybOyYgxxpPhwS_JVYyb4QKpYETeH7yPvWtrmsPifjqMjEbsTDC98y11LY2FaYxtkG6xN83P17cPtWldQatgtrj34SPSfh38rl7Tzgek2NauRQxD6DW5qEwT8eZfx-Tt6fE1XySrl-dlPl8lHUAKSQVKSWAgy1IKNFaALbEqCyVAForLlGOmFLeiKo1FqzJVGKOgtKWYiSy16ZjcnXK74D93GHu98bvQDpUaJM9YypVig2t6cu1dgwfdBbc14aA503_o9IBOH9Hp-TI_LukvyZZkaQ</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Zhang, Peng‐Dan</creator><creator>Zhang, Xin</creator><creator>Wu, Xue‐Qian</creator><creator>Xu, Zi‐Chao</creator><creator>Li, Jian‐Rong</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8101-8493</orcidid><orcidid>https://orcid.org/0000-0001-9318-8839</orcidid></search><sort><creationdate>202210</creationdate><title>Boosting C2H6/C2H4 separation in scalable metal‐organic frameworks through pore engineering</title><author>Zhang, Peng‐Dan ; Zhang, Xin ; Wu, Xue‐Qian ; Xu, Zi‐Chao ; Li, Jian‐Rong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2232-f28872027dd75eab52bdefdc8527c81731e4881b5fdabeb848caa82dbd59543b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adsorption</topic><topic>C2H6/C2H4 separation</topic><topic>Copper</topic><topic>Ethane</topic><topic>Heat of adsorption</topic><topic>Metal-organic frameworks</topic><topic>pillared‐layer</topic><topic>pore engineering</topic><topic>Purification</topic><topic>scalable synthesis</topic><topic>Selectivity</topic><topic>Separation</topic><topic>Surface properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Peng‐Dan</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><creatorcontrib>Wu, Xue‐Qian</creatorcontrib><creatorcontrib>Xu, Zi‐Chao</creatorcontrib><creatorcontrib>Li, Jian‐Rong</creatorcontrib><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Peng‐Dan</au><au>Zhang, Xin</au><au>Wu, Xue‐Qian</au><au>Xu, Zi‐Chao</au><au>Li, Jian‐Rong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting C2H6/C2H4 separation in scalable metal‐organic frameworks through pore engineering</atitle><jtitle>AIChE journal</jtitle><date>2022-10</date><risdate>2022</risdate><volume>68</volume><issue>10</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>The development of ethane (C2H6)‐selective adsorbents for ethylene (C2H4) purification, although challenging, is of prime industrial importance. Pillared‐layer metal‐organic frameworks (MOFs) possess facilely tunable pore structure and functionality, which means they have excellent potential for high‐performance C2H6/C2H4 separation applications. Herein, we report a family of isostructural pillared‐layer MOFs with various metal centers M and co‐ligands L, M2(D‐cam)4L2 (denoted M‐cam‐L; M = Cu, Co, Ni; L = pyz, apyz, dabco), with a variety of pore surface properties. All of the M‐cam‐L materials exhibit preferential adsorption for C2H6 over C2H4. In particular, Ni‐cam‐pyz exhibits the highest C2H6 capture capacity (68.75 cm3 g−1 at 1 bar and 298 K), Cu‐cam‐dabco possesses the greatest C2H6/C2H4 adsorption selectivity (2.3), and the lowest isosteric heat of adsorption is demonstrated for Cu‐cam‐pyz (20.1 kJ mol−1). Dynamic column breakthrough experiments also confirmed the excellent separation performance of M‐cam‐pyz and M‐cam‐dabco materials. The synthesis route of the M‐cam‐L materials is easily scaled‐up under laboratory conditions, and hence this class of MOFs is promising for practical C2H4 purification.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.17752</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8101-8493</orcidid><orcidid>https://orcid.org/0000-0001-9318-8839</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2022-10, Vol.68 (10), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2714031880
source Access via Wiley Online Library
subjects Adsorption
C2H6/C2H4 separation
Copper
Ethane
Heat of adsorption
Metal-organic frameworks
pillared‐layer
pore engineering
Purification
scalable synthesis
Selectivity
Separation
Surface properties
title Boosting C2H6/C2H4 separation in scalable metal‐organic frameworks through pore engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20C2H6/C2H4%20separation%20in%20scalable%20metal%E2%80%90organic%20frameworks%20through%20pore%20engineering&rft.jtitle=AIChE%20journal&rft.au=Zhang,%20Peng%E2%80%90Dan&rft.date=2022-10&rft.volume=68&rft.issue=10&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.17752&rft_dat=%3Cproquest_wiley%3E2714031880%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2714031880&rft_id=info:pmid/&rfr_iscdi=true