Unravelling the suitability of Branchinecta gaini as a potential biomonitor of contaminants of emerging concern in the Antarctic Peninsula region
The occurrence and impact of contaminants of emerging concerns (CECs) have been investigated in Antarctica much less than in other parts of the world. Although legacy anthropogenic pollutants can reach Antarctica via long-range transport, CECs mainly originate from local sources. Here, we investigat...
Gespeichert in:
Veröffentlicht in: | Antarctic science 2022-08, Vol.34 (4), p.281-288 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 288 |
---|---|
container_issue | 4 |
container_start_page | 281 |
container_title | Antarctic science |
container_volume | 34 |
creator | González-Aravena, Marcelo Iturra, Graciela Font, Alejandro Cárdenas, César A. Rondon, Rodolfo Bergami, Elisa Corsi, Ilaria |
description | The occurrence and impact of contaminants of emerging concerns (CECs) have been investigated in Antarctica much less than in other parts of the world. Although legacy anthropogenic pollutants can reach Antarctica via long-range transport, CECs mainly originate from local sources. Here, we investigated the ability of a freshwater crustacean, the Antarctic fairy shrimp Branchinecta gaini, to cope with nanoscale titanium dioxide (n-TiO2), a widely used pigment in consumer products (e.g. paintings), including those for personal care (e.g. sunscreens). An in vivo acute short-term exposure study (9 h, n-TiO2 concentration range 50–200 μg ml-1) was performed and the expression levels of several genes involved in stress response were evaluated. No effect on the expression of heat-shock protein chaperone genes was found, with the exception of Hsp70a, which was significantly upregulated at 200 μg ml-1 n-TiO2. Similarly, cytochrome P450 was upregulated at 100 and 200 μg ml-1 n-TiO2, while the expression levels of cathepsin L and of antioxidant genes such as superoxide dismutase and glutathione peroxidase were significantly reduced with increasing concentrations of n-TiO2. This study shows for the first time the responsiveness and sensitivity of an Antarctic freshwater crustacean to n-TiO2 exposure and supports its suitability as a biomonitor of CECs in Antarctica. |
doi_str_mv | 10.1017/S0954102022000086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2713947039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0954102022000086</cupid><sourcerecordid>2713947039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-a2162077b3c5711adb676aaa1e829762ec2992d95b1995cda728aae8b67f61783</originalsourceid><addsrcrecordid>eNp1kM9KxDAQxoMouK4-gLeA52qSbpvmuC7-gwUF3XOZptnuLG2yJqngY_jGtu6CB3Euw_D9vm-YIeSSs2vOuLx5ZSqbcSaYEGyoIj8iE57mWSKYVMdkMsrJqJ-SsxC2jHFRZGxCvlbWw4dpW7QNjRtDQ48RKmwxflK3prcerN6gNToCbQAtUggU6M5FYyNCSyt0nbMYnR957WyEDi3YGMbZdMY3Y_YgaOMtRfuzZj5gXkfU9MVYtKFvgXrToLPn5GQNbTAXhz4lq_u7t8Vjsnx-eFrMl4kWMxkTEDwfbpNVqjPJOdRVLnMA4KYQSubCaKGUqFVWcaUyXYMUBYApBmydc1mkU3K1z915996bEMut670dVpZC8lTNJEvVQPE9pb0LwZt1ufPYgf8sOSvHz5d_Pj940oMHuspj3Zjf6P9d38BIh4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713947039</pqid></control><display><type>article</type><title>Unravelling the suitability of Branchinecta gaini as a potential biomonitor of contaminants of emerging concern in the Antarctic Peninsula region</title><source>Cambridge University Press Journals Complete</source><creator>González-Aravena, Marcelo ; Iturra, Graciela ; Font, Alejandro ; Cárdenas, César A. ; Rondon, Rodolfo ; Bergami, Elisa ; Corsi, Ilaria</creator><creatorcontrib>González-Aravena, Marcelo ; Iturra, Graciela ; Font, Alejandro ; Cárdenas, César A. ; Rondon, Rodolfo ; Bergami, Elisa ; Corsi, Ilaria</creatorcontrib><description>The occurrence and impact of contaminants of emerging concerns (CECs) have been investigated in Antarctica much less than in other parts of the world. Although legacy anthropogenic pollutants can reach Antarctica via long-range transport, CECs mainly originate from local sources. Here, we investigated the ability of a freshwater crustacean, the Antarctic fairy shrimp Branchinecta gaini, to cope with nanoscale titanium dioxide (n-TiO2), a widely used pigment in consumer products (e.g. paintings), including those for personal care (e.g. sunscreens). An in vivo acute short-term exposure study (9 h, n-TiO2 concentration range 50–200 μg ml-1) was performed and the expression levels of several genes involved in stress response were evaluated. No effect on the expression of heat-shock protein chaperone genes was found, with the exception of Hsp70a, which was significantly upregulated at 200 μg ml-1 n-TiO2. Similarly, cytochrome P450 was upregulated at 100 and 200 μg ml-1 n-TiO2, while the expression levels of cathepsin L and of antioxidant genes such as superoxide dismutase and glutathione peroxidase were significantly reduced with increasing concentrations of n-TiO2. This study shows for the first time the responsiveness and sensitivity of an Antarctic freshwater crustacean to n-TiO2 exposure and supports its suitability as a biomonitor of CECs in Antarctica.</description><identifier>ISSN: 0954-1020</identifier><identifier>EISSN: 1365-2079</identifier><identifier>DOI: 10.1017/S0954102022000086</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Antarctic zone ; Anthropogenic factors ; Aquatic crustaceans ; Biological Sciences ; Branchinecta gaini ; Cathepsin L ; Consumer products ; Contaminants ; Crustaceans ; Cytochrome P450 ; Cytochromes ; Cytochromes P450 ; Freshwater ; Freshwater crustaceans ; Gene expression ; Genes ; Glutathione ; Glutathione peroxidase ; Human influences ; In vivo methods and tests ; Indicator organisms ; Inland water environment ; Long-range transport ; Marine crustaceans ; Nanoparticles ; Peroxidase ; Plastic pollution ; Pollutants ; Pollution dispersion ; Polymerase chain reaction ; Stress response ; Sun screens ; Sunscreen ; Sunscreens ; Superoxide dismutase ; Titanium ; Titanium dioxide</subject><ispartof>Antarctic science, 2022-08, Vol.34 (4), p.281-288</ispartof><rights>Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of Antarctic Science Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-a2162077b3c5711adb676aaa1e829762ec2992d95b1995cda728aae8b67f61783</citedby><cites>FETCH-LOGICAL-c247t-a2162077b3c5711adb676aaa1e829762ec2992d95b1995cda728aae8b67f61783</cites><orcidid>0000-0001-8149-9584 ; 0000-0001-9986-9504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0954102022000086/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>González-Aravena, Marcelo</creatorcontrib><creatorcontrib>Iturra, Graciela</creatorcontrib><creatorcontrib>Font, Alejandro</creatorcontrib><creatorcontrib>Cárdenas, César A.</creatorcontrib><creatorcontrib>Rondon, Rodolfo</creatorcontrib><creatorcontrib>Bergami, Elisa</creatorcontrib><creatorcontrib>Corsi, Ilaria</creatorcontrib><title>Unravelling the suitability of Branchinecta gaini as a potential biomonitor of contaminants of emerging concern in the Antarctic Peninsula region</title><title>Antarctic science</title><addtitle>Antarctic Science</addtitle><description>The occurrence and impact of contaminants of emerging concerns (CECs) have been investigated in Antarctica much less than in other parts of the world. Although legacy anthropogenic pollutants can reach Antarctica via long-range transport, CECs mainly originate from local sources. Here, we investigated the ability of a freshwater crustacean, the Antarctic fairy shrimp Branchinecta gaini, to cope with nanoscale titanium dioxide (n-TiO2), a widely used pigment in consumer products (e.g. paintings), including those for personal care (e.g. sunscreens). An in vivo acute short-term exposure study (9 h, n-TiO2 concentration range 50–200 μg ml-1) was performed and the expression levels of several genes involved in stress response were evaluated. No effect on the expression of heat-shock protein chaperone genes was found, with the exception of Hsp70a, which was significantly upregulated at 200 μg ml-1 n-TiO2. Similarly, cytochrome P450 was upregulated at 100 and 200 μg ml-1 n-TiO2, while the expression levels of cathepsin L and of antioxidant genes such as superoxide dismutase and glutathione peroxidase were significantly reduced with increasing concentrations of n-TiO2. This study shows for the first time the responsiveness and sensitivity of an Antarctic freshwater crustacean to n-TiO2 exposure and supports its suitability as a biomonitor of CECs in Antarctica.</description><subject>Antarctic zone</subject><subject>Anthropogenic factors</subject><subject>Aquatic crustaceans</subject><subject>Biological Sciences</subject><subject>Branchinecta gaini</subject><subject>Cathepsin L</subject><subject>Consumer products</subject><subject>Contaminants</subject><subject>Crustaceans</subject><subject>Cytochrome P450</subject><subject>Cytochromes</subject><subject>Cytochromes P450</subject><subject>Freshwater</subject><subject>Freshwater crustaceans</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Glutathione</subject><subject>Glutathione peroxidase</subject><subject>Human influences</subject><subject>In vivo methods and tests</subject><subject>Indicator organisms</subject><subject>Inland water environment</subject><subject>Long-range transport</subject><subject>Marine crustaceans</subject><subject>Nanoparticles</subject><subject>Peroxidase</subject><subject>Plastic pollution</subject><subject>Pollutants</subject><subject>Pollution dispersion</subject><subject>Polymerase chain reaction</subject><subject>Stress response</subject><subject>Sun screens</subject><subject>Sunscreen</subject><subject>Sunscreens</subject><subject>Superoxide dismutase</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>0954-1020</issn><issn>1365-2079</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM9KxDAQxoMouK4-gLeA52qSbpvmuC7-gwUF3XOZptnuLG2yJqngY_jGtu6CB3Euw_D9vm-YIeSSs2vOuLx5ZSqbcSaYEGyoIj8iE57mWSKYVMdkMsrJqJ-SsxC2jHFRZGxCvlbWw4dpW7QNjRtDQ48RKmwxflK3prcerN6gNToCbQAtUggU6M5FYyNCSyt0nbMYnR957WyEDi3YGMbZdMY3Y_YgaOMtRfuzZj5gXkfU9MVYtKFvgXrToLPn5GQNbTAXhz4lq_u7t8Vjsnx-eFrMl4kWMxkTEDwfbpNVqjPJOdRVLnMA4KYQSubCaKGUqFVWcaUyXYMUBYApBmydc1mkU3K1z915996bEMut670dVpZC8lTNJEvVQPE9pb0LwZt1ufPYgf8sOSvHz5d_Pj940oMHuspj3Zjf6P9d38BIh4o</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>González-Aravena, Marcelo</creator><creator>Iturra, Graciela</creator><creator>Font, Alejandro</creator><creator>Cárdenas, César A.</creator><creator>Rondon, Rodolfo</creator><creator>Bergami, Elisa</creator><creator>Corsi, Ilaria</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>M7N</scope><scope>M7S</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-8149-9584</orcidid><orcidid>https://orcid.org/0000-0001-9986-9504</orcidid></search><sort><creationdate>202208</creationdate><title>Unravelling the suitability of Branchinecta gaini as a potential biomonitor of contaminants of emerging concern in the Antarctic Peninsula region</title><author>González-Aravena, Marcelo ; Iturra, Graciela ; Font, Alejandro ; Cárdenas, César A. ; Rondon, Rodolfo ; Bergami, Elisa ; Corsi, Ilaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-a2162077b3c5711adb676aaa1e829762ec2992d95b1995cda728aae8b67f61783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antarctic zone</topic><topic>Anthropogenic factors</topic><topic>Aquatic crustaceans</topic><topic>Biological Sciences</topic><topic>Branchinecta gaini</topic><topic>Cathepsin L</topic><topic>Consumer products</topic><topic>Contaminants</topic><topic>Crustaceans</topic><topic>Cytochrome P450</topic><topic>Cytochromes</topic><topic>Cytochromes P450</topic><topic>Freshwater</topic><topic>Freshwater crustaceans</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Glutathione</topic><topic>Glutathione peroxidase</topic><topic>Human influences</topic><topic>In vivo methods and tests</topic><topic>Indicator organisms</topic><topic>Inland water environment</topic><topic>Long-range transport</topic><topic>Marine crustaceans</topic><topic>Nanoparticles</topic><topic>Peroxidase</topic><topic>Plastic pollution</topic><topic>Pollutants</topic><topic>Pollution dispersion</topic><topic>Polymerase chain reaction</topic><topic>Stress response</topic><topic>Sun screens</topic><topic>Sunscreen</topic><topic>Sunscreens</topic><topic>Superoxide dismutase</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Aravena, Marcelo</creatorcontrib><creatorcontrib>Iturra, Graciela</creatorcontrib><creatorcontrib>Font, Alejandro</creatorcontrib><creatorcontrib>Cárdenas, César A.</creatorcontrib><creatorcontrib>Rondon, Rodolfo</creatorcontrib><creatorcontrib>Bergami, Elisa</creatorcontrib><creatorcontrib>Corsi, Ilaria</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><jtitle>Antarctic science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>González-Aravena, Marcelo</au><au>Iturra, Graciela</au><au>Font, Alejandro</au><au>Cárdenas, César A.</au><au>Rondon, Rodolfo</au><au>Bergami, Elisa</au><au>Corsi, Ilaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling the suitability of Branchinecta gaini as a potential biomonitor of contaminants of emerging concern in the Antarctic Peninsula region</atitle><jtitle>Antarctic science</jtitle><addtitle>Antarctic Science</addtitle><date>2022-08</date><risdate>2022</risdate><volume>34</volume><issue>4</issue><spage>281</spage><epage>288</epage><pages>281-288</pages><issn>0954-1020</issn><eissn>1365-2079</eissn><abstract>The occurrence and impact of contaminants of emerging concerns (CECs) have been investigated in Antarctica much less than in other parts of the world. Although legacy anthropogenic pollutants can reach Antarctica via long-range transport, CECs mainly originate from local sources. Here, we investigated the ability of a freshwater crustacean, the Antarctic fairy shrimp Branchinecta gaini, to cope with nanoscale titanium dioxide (n-TiO2), a widely used pigment in consumer products (e.g. paintings), including those for personal care (e.g. sunscreens). An in vivo acute short-term exposure study (9 h, n-TiO2 concentration range 50–200 μg ml-1) was performed and the expression levels of several genes involved in stress response were evaluated. No effect on the expression of heat-shock protein chaperone genes was found, with the exception of Hsp70a, which was significantly upregulated at 200 μg ml-1 n-TiO2. Similarly, cytochrome P450 was upregulated at 100 and 200 μg ml-1 n-TiO2, while the expression levels of cathepsin L and of antioxidant genes such as superoxide dismutase and glutathione peroxidase were significantly reduced with increasing concentrations of n-TiO2. This study shows for the first time the responsiveness and sensitivity of an Antarctic freshwater crustacean to n-TiO2 exposure and supports its suitability as a biomonitor of CECs in Antarctica.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0954102022000086</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8149-9584</orcidid><orcidid>https://orcid.org/0000-0001-9986-9504</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0954-1020 |
ispartof | Antarctic science, 2022-08, Vol.34 (4), p.281-288 |
issn | 0954-1020 1365-2079 |
language | eng |
recordid | cdi_proquest_journals_2713947039 |
source | Cambridge University Press Journals Complete |
subjects | Antarctic zone Anthropogenic factors Aquatic crustaceans Biological Sciences Branchinecta gaini Cathepsin L Consumer products Contaminants Crustaceans Cytochrome P450 Cytochromes Cytochromes P450 Freshwater Freshwater crustaceans Gene expression Genes Glutathione Glutathione peroxidase Human influences In vivo methods and tests Indicator organisms Inland water environment Long-range transport Marine crustaceans Nanoparticles Peroxidase Plastic pollution Pollutants Pollution dispersion Polymerase chain reaction Stress response Sun screens Sunscreen Sunscreens Superoxide dismutase Titanium Titanium dioxide |
title | Unravelling the suitability of Branchinecta gaini as a potential biomonitor of contaminants of emerging concern in the Antarctic Peninsula region |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A23%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20the%20suitability%20of%20Branchinecta%20gaini%20as%20a%20potential%20biomonitor%20of%20contaminants%20of%20emerging%20concern%20in%20the%20Antarctic%20Peninsula%20region&rft.jtitle=Antarctic%20science&rft.au=Gonz%C3%A1lez-Aravena,%20Marcelo&rft.date=2022-08&rft.volume=34&rft.issue=4&rft.spage=281&rft.epage=288&rft.pages=281-288&rft.issn=0954-1020&rft.eissn=1365-2079&rft_id=info:doi/10.1017/S0954102022000086&rft_dat=%3Cproquest_cross%3E2713947039%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713947039&rft_id=info:pmid/&rft_cupid=10_1017_S0954102022000086&rfr_iscdi=true |