Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture

Reliable estimation of remaining useful life (RUL) is a critical challenge in prognostics and health management (PHM), enabling the industry to better schedule future maintenance operations and reduce overhead costs and time linked to unnecessary maintenance operations. We notice that some efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatic control and computer sciences 2022-08, Vol.56 (4), p.300-310
Hauptverfasser: Remadna, I., Terrissa, S. L., Sayah, M., Ayad, S., Zerhouni, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 310
container_issue 4
container_start_page 300
container_title Automatic control and computer sciences
container_volume 56
creator Remadna, I.
Terrissa, S. L.
Sayah, M.
Ayad, S.
Zerhouni, N.
description Reliable estimation of remaining useful life (RUL) is a critical challenge in prognostics and health management (PHM), enabling the industry to better schedule future maintenance operations and reduce overhead costs and time linked to unnecessary maintenance operations. We notice that some efficient hybrid deep learning (DL) models have recently been proposed for performing RUL estimation and prediction. These novel techniques focus on combining several machine learning techniques to leverage the power of different models, especially in this paper a new hybrid method that blends convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) to extract spatial and temporal features. The experiments of our approach on the C-MAPSS dataset show the relevance of the proposed hybrid DL method, since it outperforms the results of many proposed models in the RUL prediction literature.
doi_str_mv 10.3103/S014641162204006X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2713464825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713464825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-bcf2c2246330186105b7e1e38f02898b1f00074801b0a26c2b3f34879407f36d3</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLcFz9GZ3c1mc2yqtUKsYhvoLSSb3ZqiSd1ND_33JlTwIJ4G5n3vDfMIuUa45Qj8bgkopECUjIEAkOsTMsIwVAGCWp-S0SAHg35OLrzfAvSakiOSJG3ru7rZ0Lcspa_OVLXu6rahmR-WBZ0fSldX9N6YHZ0uFkGSLlfPdOL0e90Z3e2duSRntvjw5upnjkk2e1hN50H68vg0naSBxlh1Qakt04wJyTmgkghhGRk0XFlgKlYlWgCIhAIsoWBSs5JbLlQUC4gslxUfk5tj7s61X3vju3zb7l3Tn8xZhLx_X7Gwp_BIadd674zNd67-LNwhR8iHqvI_VfUedvT4nm02xv0m_2_6Bt4xZwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713464825</pqid></control><display><type>article</type><title>Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture</title><source>Springer Nature - Complete Springer Journals</source><creator>Remadna, I. ; Terrissa, S. L. ; Sayah, M. ; Ayad, S. ; Zerhouni, N.</creator><creatorcontrib>Remadna, I. ; Terrissa, S. L. ; Sayah, M. ; Ayad, S. ; Zerhouni, N.</creatorcontrib><description>Reliable estimation of remaining useful life (RUL) is a critical challenge in prognostics and health management (PHM), enabling the industry to better schedule future maintenance operations and reduce overhead costs and time linked to unnecessary maintenance operations. We notice that some efficient hybrid deep learning (DL) models have recently been proposed for performing RUL estimation and prediction. These novel techniques focus on combining several machine learning techniques to leverage the power of different models, especially in this paper a new hybrid method that blends convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) to extract spatial and temporal features. The experiments of our approach on the C-MAPSS dataset show the relevance of the proposed hybrid DL method, since it outperforms the results of many proposed models in the RUL prediction literature.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S014641162204006X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial neural networks ; Computer Science ; Control Structures and Microprogramming ; Deep learning ; Feature extraction ; Machine learning ; Maintenance</subject><ispartof>Automatic control and computer sciences, 2022-08, Vol.56 (4), p.300-310</ispartof><rights>Allerton Press, Inc. 2022. ISSN 0146-4116, Automatic Control and Computer Sciences, 2022, Vol. 56, No. 4, pp. 300–310. © Allerton Press, Inc., 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-bcf2c2246330186105b7e1e38f02898b1f00074801b0a26c2b3f34879407f36d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S014641162204006X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S014641162204006X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Remadna, I.</creatorcontrib><creatorcontrib>Terrissa, S. L.</creatorcontrib><creatorcontrib>Sayah, M.</creatorcontrib><creatorcontrib>Ayad, S.</creatorcontrib><creatorcontrib>Zerhouni, N.</creatorcontrib><title>Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>Reliable estimation of remaining useful life (RUL) is a critical challenge in prognostics and health management (PHM), enabling the industry to better schedule future maintenance operations and reduce overhead costs and time linked to unnecessary maintenance operations. We notice that some efficient hybrid deep learning (DL) models have recently been proposed for performing RUL estimation and prediction. These novel techniques focus on combining several machine learning techniques to leverage the power of different models, especially in this paper a new hybrid method that blends convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) to extract spatial and temporal features. The experiments of our approach on the C-MAPSS dataset show the relevance of the proposed hybrid DL method, since it outperforms the results of many proposed models in the RUL prediction literature.</description><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Maintenance</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLcFz9GZ3c1mc2yqtUKsYhvoLSSb3ZqiSd1ND_33JlTwIJ4G5n3vDfMIuUa45Qj8bgkopECUjIEAkOsTMsIwVAGCWp-S0SAHg35OLrzfAvSakiOSJG3ru7rZ0Lcspa_OVLXu6rahmR-WBZ0fSldX9N6YHZ0uFkGSLlfPdOL0e90Z3e2duSRntvjw5upnjkk2e1hN50H68vg0naSBxlh1Qakt04wJyTmgkghhGRk0XFlgKlYlWgCIhAIsoWBSs5JbLlQUC4gslxUfk5tj7s61X3vju3zb7l3Tn8xZhLx_X7Gwp_BIadd674zNd67-LNwhR8iHqvI_VfUedvT4nm02xv0m_2_6Bt4xZwI</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Remadna, I.</creator><creator>Terrissa, S. L.</creator><creator>Sayah, M.</creator><creator>Ayad, S.</creator><creator>Zerhouni, N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture</title><author>Remadna, I. ; Terrissa, S. L. ; Sayah, M. ; Ayad, S. ; Zerhouni, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-bcf2c2246330186105b7e1e38f02898b1f00074801b0a26c2b3f34879407f36d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Maintenance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remadna, I.</creatorcontrib><creatorcontrib>Terrissa, S. L.</creatorcontrib><creatorcontrib>Sayah, M.</creatorcontrib><creatorcontrib>Ayad, S.</creatorcontrib><creatorcontrib>Zerhouni, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Remadna, I.</au><au>Terrissa, S. L.</au><au>Sayah, M.</au><au>Ayad, S.</au><au>Zerhouni, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>56</volume><issue>4</issue><spage>300</spage><epage>310</epage><pages>300-310</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>Reliable estimation of remaining useful life (RUL) is a critical challenge in prognostics and health management (PHM), enabling the industry to better schedule future maintenance operations and reduce overhead costs and time linked to unnecessary maintenance operations. We notice that some efficient hybrid deep learning (DL) models have recently been proposed for performing RUL estimation and prediction. These novel techniques focus on combining several machine learning techniques to leverage the power of different models, especially in this paper a new hybrid method that blends convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) to extract spatial and temporal features. The experiments of our approach on the C-MAPSS dataset show the relevance of the proposed hybrid DL method, since it outperforms the results of many proposed models in the RUL prediction literature.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S014641162204006X</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0146-4116
ispartof Automatic control and computer sciences, 2022-08, Vol.56 (4), p.300-310
issn 0146-4116
1558-108X
language eng
recordid cdi_proquest_journals_2713464825
source Springer Nature - Complete Springer Journals
subjects Artificial neural networks
Computer Science
Control Structures and Microprogramming
Deep learning
Feature extraction
Machine learning
Maintenance
title Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20RUL%20Prediction%20Using%20a%20Hybrid%20Deep%20CNN-BLSTM%20Architecture&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Remadna,%20I.&rft.date=2022-08-01&rft.volume=56&rft.issue=4&rft.spage=300&rft.epage=310&rft.pages=300-310&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S014641162204006X&rft_dat=%3Cproquest_cross%3E2713464825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713464825&rft_id=info:pmid/&rfr_iscdi=true