Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture
Reliable estimation of remaining useful life (RUL) is a critical challenge in prognostics and health management (PHM), enabling the industry to better schedule future maintenance operations and reduce overhead costs and time linked to unnecessary maintenance operations. We notice that some efficient...
Gespeichert in:
Veröffentlicht in: | Automatic control and computer sciences 2022-08, Vol.56 (4), p.300-310 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 310 |
---|---|
container_issue | 4 |
container_start_page | 300 |
container_title | Automatic control and computer sciences |
container_volume | 56 |
creator | Remadna, I. Terrissa, S. L. Sayah, M. Ayad, S. Zerhouni, N. |
description | Reliable estimation of remaining useful life (RUL) is a critical challenge in prognostics and health management (PHM), enabling the industry to better schedule future maintenance operations and reduce overhead costs and time linked to unnecessary maintenance operations. We notice that some efficient hybrid deep learning (DL) models have recently been proposed for performing RUL estimation and prediction. These novel techniques focus on combining several machine learning techniques to leverage the power of different models, especially in this paper a new hybrid method that blends convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) to extract spatial and temporal features. The experiments of our approach on the C-MAPSS dataset show the relevance of the proposed hybrid DL method, since it outperforms the results of many proposed models in the RUL prediction literature. |
doi_str_mv | 10.3103/S014641162204006X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2713464825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713464825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-bcf2c2246330186105b7e1e38f02898b1f00074801b0a26c2b3f34879407f36d3</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLcFz9GZ3c1mc2yqtUKsYhvoLSSb3ZqiSd1ND_33JlTwIJ4G5n3vDfMIuUa45Qj8bgkopECUjIEAkOsTMsIwVAGCWp-S0SAHg35OLrzfAvSakiOSJG3ru7rZ0Lcspa_OVLXu6rahmR-WBZ0fSldX9N6YHZ0uFkGSLlfPdOL0e90Z3e2duSRntvjw5upnjkk2e1hN50H68vg0naSBxlh1Qakt04wJyTmgkghhGRk0XFlgKlYlWgCIhAIsoWBSs5JbLlQUC4gslxUfk5tj7s61X3vju3zb7l3Tn8xZhLx_X7Gwp_BIadd674zNd67-LNwhR8iHqvI_VfUedvT4nm02xv0m_2_6Bt4xZwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713464825</pqid></control><display><type>article</type><title>Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture</title><source>Springer Nature - Complete Springer Journals</source><creator>Remadna, I. ; Terrissa, S. L. ; Sayah, M. ; Ayad, S. ; Zerhouni, N.</creator><creatorcontrib>Remadna, I. ; Terrissa, S. L. ; Sayah, M. ; Ayad, S. ; Zerhouni, N.</creatorcontrib><description>Reliable estimation of remaining useful life (RUL) is a critical challenge in prognostics and health management (PHM), enabling the industry to better schedule future maintenance operations and reduce overhead costs and time linked to unnecessary maintenance operations. We notice that some efficient hybrid deep learning (DL) models have recently been proposed for performing RUL estimation and prediction. These novel techniques focus on combining several machine learning techniques to leverage the power of different models, especially in this paper a new hybrid method that blends convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) to extract spatial and temporal features. The experiments of our approach on the C-MAPSS dataset show the relevance of the proposed hybrid DL method, since it outperforms the results of many proposed models in the RUL prediction literature.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S014641162204006X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Artificial neural networks ; Computer Science ; Control Structures and Microprogramming ; Deep learning ; Feature extraction ; Machine learning ; Maintenance</subject><ispartof>Automatic control and computer sciences, 2022-08, Vol.56 (4), p.300-310</ispartof><rights>Allerton Press, Inc. 2022. ISSN 0146-4116, Automatic Control and Computer Sciences, 2022, Vol. 56, No. 4, pp. 300–310. © Allerton Press, Inc., 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-bcf2c2246330186105b7e1e38f02898b1f00074801b0a26c2b3f34879407f36d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S014641162204006X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S014641162204006X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Remadna, I.</creatorcontrib><creatorcontrib>Terrissa, S. L.</creatorcontrib><creatorcontrib>Sayah, M.</creatorcontrib><creatorcontrib>Ayad, S.</creatorcontrib><creatorcontrib>Zerhouni, N.</creatorcontrib><title>Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>Reliable estimation of remaining useful life (RUL) is a critical challenge in prognostics and health management (PHM), enabling the industry to better schedule future maintenance operations and reduce overhead costs and time linked to unnecessary maintenance operations. We notice that some efficient hybrid deep learning (DL) models have recently been proposed for performing RUL estimation and prediction. These novel techniques focus on combining several machine learning techniques to leverage the power of different models, especially in this paper a new hybrid method that blends convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) to extract spatial and temporal features. The experiments of our approach on the C-MAPSS dataset show the relevance of the proposed hybrid DL method, since it outperforms the results of many proposed models in the RUL prediction literature.</description><subject>Artificial neural networks</subject><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Maintenance</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRsFZ_gLcFz9GZ3c1mc2yqtUKsYhvoLSSb3ZqiSd1ND_33JlTwIJ4G5n3vDfMIuUa45Qj8bgkopECUjIEAkOsTMsIwVAGCWp-S0SAHg35OLrzfAvSakiOSJG3ru7rZ0Lcspa_OVLXu6rahmR-WBZ0fSldX9N6YHZ0uFkGSLlfPdOL0e90Z3e2duSRntvjw5upnjkk2e1hN50H68vg0naSBxlh1Qakt04wJyTmgkghhGRk0XFlgKlYlWgCIhAIsoWBSs5JbLlQUC4gslxUfk5tj7s61X3vju3zb7l3Tn8xZhLx_X7Gwp_BIadd674zNd67-LNwhR8iHqvI_VfUedvT4nm02xv0m_2_6Bt4xZwI</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Remadna, I.</creator><creator>Terrissa, S. L.</creator><creator>Sayah, M.</creator><creator>Ayad, S.</creator><creator>Zerhouni, N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220801</creationdate><title>Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture</title><author>Remadna, I. ; Terrissa, S. L. ; Sayah, M. ; Ayad, S. ; Zerhouni, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-bcf2c2246330186105b7e1e38f02898b1f00074801b0a26c2b3f34879407f36d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Maintenance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remadna, I.</creatorcontrib><creatorcontrib>Terrissa, S. L.</creatorcontrib><creatorcontrib>Sayah, M.</creatorcontrib><creatorcontrib>Ayad, S.</creatorcontrib><creatorcontrib>Zerhouni, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Remadna, I.</au><au>Terrissa, S. L.</au><au>Sayah, M.</au><au>Ayad, S.</au><au>Zerhouni, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>56</volume><issue>4</issue><spage>300</spage><epage>310</epage><pages>300-310</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>Reliable estimation of remaining useful life (RUL) is a critical challenge in prognostics and health management (PHM), enabling the industry to better schedule future maintenance operations and reduce overhead costs and time linked to unnecessary maintenance operations. We notice that some efficient hybrid deep learning (DL) models have recently been proposed for performing RUL estimation and prediction. These novel techniques focus on combining several machine learning techniques to leverage the power of different models, especially in this paper a new hybrid method that blends convolutional neural network (CNN) and bi-directional long short-term memory (BLSTM) to extract spatial and temporal features. The experiments of our approach on the C-MAPSS dataset show the relevance of the proposed hybrid DL method, since it outperforms the results of many proposed models in the RUL prediction literature.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S014641162204006X</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-4116 |
ispartof | Automatic control and computer sciences, 2022-08, Vol.56 (4), p.300-310 |
issn | 0146-4116 1558-108X |
language | eng |
recordid | cdi_proquest_journals_2713464825 |
source | Springer Nature - Complete Springer Journals |
subjects | Artificial neural networks Computer Science Control Structures and Microprogramming Deep learning Feature extraction Machine learning Maintenance |
title | Boosting RUL Prediction Using a Hybrid Deep CNN-BLSTM Architecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A00%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20RUL%20Prediction%20Using%20a%20Hybrid%20Deep%20CNN-BLSTM%20Architecture&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Remadna,%20I.&rft.date=2022-08-01&rft.volume=56&rft.issue=4&rft.spage=300&rft.epage=310&rft.pages=300-310&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S014641162204006X&rft_dat=%3Cproquest_cross%3E2713464825%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713464825&rft_id=info:pmid/&rfr_iscdi=true |