High‐Resolution Study of Changes in Morphology and Chemistry of Cylindrical PS‐b‐PMMA Block Copolymer Nanomasks during Mask Development

Nanolithography with self‐assembled block copolymers (BCPs) is an emerging competitive alternative to conventional lithography, which is currently reaching its limits with regard to resolution and economic feasibility. For high‐resolution lithography, both the abruptness of BCP internal interfaces b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2022-09, Vol.9 (26), p.n/a
Hauptverfasser: Bürger, Julius, Venugopal, Harikrishnan, Kool, Daniel, Arcos, Teresa, Gonzalez Orive, Alejandro, Grundmeier, Guido, Brassat, Katharina, Lindner, Jörg K.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 26
container_start_page
container_title Advanced materials interfaces
container_volume 9
creator Bürger, Julius
Venugopal, Harikrishnan
Kool, Daniel
Arcos, Teresa
Gonzalez Orive, Alejandro
Grundmeier, Guido
Brassat, Katharina
Lindner, Jörg K.N.
description Nanolithography with self‐assembled block copolymers (BCPs) is an emerging competitive alternative to conventional lithography, which is currently reaching its limits with regard to resolution and economic feasibility. For high‐resolution lithography, both the abruptness of BCP internal interfaces between self‐assembled polymer nanodomains and the processing steps used to selectively remove one of the polymers are crucial. This paper presents a detailed investigation of the chemistry, the mask wall morphology, and the line edge roughness (LER) of self‐assembled nanomasks from polystyrene‐b‐polymethylmethacrylate (PS‐b‐PMMA) before and after selective removal of the PMMA nanodomains. For the latter, either wet or plasma etching are employed and their impact on both the morphology and chemistry of resulting nanomasks is analysed using analytical (scanning) transmission electron microscopy (STEM), X‐ray photoelectron spectroscopy and polarization‐modulated infrared reflection‐absorption spectroscopy. Dedicated image analysis tools are developed to determine for the first time the LER of cylindrical openings in PS masks from STEM dark‐field images at sub‐nanometer resolution. Applying these tools prior to and after PMMA removal from the BCP films, the statistics of feature sizes, LERs, and interfacial widths are determined. In addition, the impact of wet and dry etching processes on PS‐co‐PMMA random copolymer brushes required for substrate functionalization is evaluated. The chemistry, morphology, line edge roughness, and interfacial width of cylindrical nanopores created using the microphase separation of a polystyrene‐b‐polymethylmethacrylate (PS‐b‐PMMA) block‐copolymer and either UV light acetic acid or reactive ion etching treatment for subsequent PMMA removal are revealed at sub‐nanometer resolution using low‐keV Cs‐corrected analytical (scanning) transmission electron microscopy combined with X‐ray photoelectron spectroscopy and polarization‐modulated infrared reflection‐absorption spectroscopy.
doi_str_mv 10.1002/admi.202200962
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2713200757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713200757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3572-9c9b9a59c5593567d6e919b516f5d164954eabcbab2096f8cf6045d169fea653</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhiMEElXpymyJucV26qQeSwu0UgMV7R45iZO6dexgJ6BsvAASz8iT4CoI2BhOd6f7__-kz_MuERwhCPE1y0oxwhBjCGmAT7weRjQYhj6Bp3_mc29g7R5CiBBGeOL3vPeFKHafbx9P3GrZ1EIrsKmbrAU6B7MdUwW3QCgQaVPttNRFC5jK3IWXwtamk7VSqMyIlEmw3risxNU6iqbgRur0AGa60rItuQEPTOmS2YMFWWOEKkDkFjDnL1zqquSqvvDOciYtH3z3vre9u93OFsPV4_1yNl0NU5-EeEhTmlBGaEoI9UkQZgGniCYEBTnJUDCmZMxZkiYswY5GPknzAI6PF5pzFhC_7111sZXRzw23dbzXjVHuY4xD5DuGIQmdatSpUqOtNTyPKyNKZtoYwfgIPT5Cj3-gOwPtDK9C8vYfdTydR8tf7xel0YnQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713200757</pqid></control><display><type>article</type><title>High‐Resolution Study of Changes in Morphology and Chemistry of Cylindrical PS‐b‐PMMA Block Copolymer Nanomasks during Mask Development</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bürger, Julius ; Venugopal, Harikrishnan ; Kool, Daniel ; Arcos, Teresa ; Gonzalez Orive, Alejandro ; Grundmeier, Guido ; Brassat, Katharina ; Lindner, Jörg K.N.</creator><creatorcontrib>Bürger, Julius ; Venugopal, Harikrishnan ; Kool, Daniel ; Arcos, Teresa ; Gonzalez Orive, Alejandro ; Grundmeier, Guido ; Brassat, Katharina ; Lindner, Jörg K.N.</creatorcontrib><description>Nanolithography with self‐assembled block copolymers (BCPs) is an emerging competitive alternative to conventional lithography, which is currently reaching its limits with regard to resolution and economic feasibility. For high‐resolution lithography, both the abruptness of BCP internal interfaces between self‐assembled polymer nanodomains and the processing steps used to selectively remove one of the polymers are crucial. This paper presents a detailed investigation of the chemistry, the mask wall morphology, and the line edge roughness (LER) of self‐assembled nanomasks from polystyrene‐b‐polymethylmethacrylate (PS‐b‐PMMA) before and after selective removal of the PMMA nanodomains. For the latter, either wet or plasma etching are employed and their impact on both the morphology and chemistry of resulting nanomasks is analysed using analytical (scanning) transmission electron microscopy (STEM), X‐ray photoelectron spectroscopy and polarization‐modulated infrared reflection‐absorption spectroscopy. Dedicated image analysis tools are developed to determine for the first time the LER of cylindrical openings in PS masks from STEM dark‐field images at sub‐nanometer resolution. Applying these tools prior to and after PMMA removal from the BCP films, the statistics of feature sizes, LERs, and interfacial widths are determined. In addition, the impact of wet and dry etching processes on PS‐co‐PMMA random copolymer brushes required for substrate functionalization is evaluated. The chemistry, morphology, line edge roughness, and interfacial width of cylindrical nanopores created using the microphase separation of a polystyrene‐b‐polymethylmethacrylate (PS‐b‐PMMA) block‐copolymer and either UV light acetic acid or reactive ion etching treatment for subsequent PMMA removal are revealed at sub‐nanometer resolution using low‐keV Cs‐corrected analytical (scanning) transmission electron microscopy combined with X‐ray photoelectron spectroscopy and polarization‐modulated infrared reflection‐absorption spectroscopy.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.202200962</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>analytical (S)TEM ; Block copolymers ; dry etching ; Image analysis ; Infrared analysis ; Infrared reflection ; Infrared spectroscopy ; line edge roughness ; Morphology ; Nanolithography ; Photoelectrons ; Plasma etching ; Polymethyl methacrylate ; polymethylmethacrylate removal ; Polystyrene resins ; PS‐b‐PMMA ; random copolymer brush ; Scanning transmission electron microscopy ; Substrates ; wet etching ; X‐ray photoelectron spectroscopy</subject><ispartof>Advanced materials interfaces, 2022-09, Vol.9 (26), p.n/a</ispartof><rights>2022 The Authors. Advanced Materials Interfaces published by Wiley‐VCH GmbH</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3572-9c9b9a59c5593567d6e919b516f5d164954eabcbab2096f8cf6045d169fea653</citedby><cites>FETCH-LOGICAL-c3572-9c9b9a59c5593567d6e919b516f5d164954eabcbab2096f8cf6045d169fea653</cites><orcidid>0000-0001-9090-8677 ; 0000-0002-4420-9389 ; 0000-0003-2367-9610 ; 0000-0003-2550-4048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.202200962$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.202200962$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Bürger, Julius</creatorcontrib><creatorcontrib>Venugopal, Harikrishnan</creatorcontrib><creatorcontrib>Kool, Daniel</creatorcontrib><creatorcontrib>Arcos, Teresa</creatorcontrib><creatorcontrib>Gonzalez Orive, Alejandro</creatorcontrib><creatorcontrib>Grundmeier, Guido</creatorcontrib><creatorcontrib>Brassat, Katharina</creatorcontrib><creatorcontrib>Lindner, Jörg K.N.</creatorcontrib><title>High‐Resolution Study of Changes in Morphology and Chemistry of Cylindrical PS‐b‐PMMA Block Copolymer Nanomasks during Mask Development</title><title>Advanced materials interfaces</title><description>Nanolithography with self‐assembled block copolymers (BCPs) is an emerging competitive alternative to conventional lithography, which is currently reaching its limits with regard to resolution and economic feasibility. For high‐resolution lithography, both the abruptness of BCP internal interfaces between self‐assembled polymer nanodomains and the processing steps used to selectively remove one of the polymers are crucial. This paper presents a detailed investigation of the chemistry, the mask wall morphology, and the line edge roughness (LER) of self‐assembled nanomasks from polystyrene‐b‐polymethylmethacrylate (PS‐b‐PMMA) before and after selective removal of the PMMA nanodomains. For the latter, either wet or plasma etching are employed and their impact on both the morphology and chemistry of resulting nanomasks is analysed using analytical (scanning) transmission electron microscopy (STEM), X‐ray photoelectron spectroscopy and polarization‐modulated infrared reflection‐absorption spectroscopy. Dedicated image analysis tools are developed to determine for the first time the LER of cylindrical openings in PS masks from STEM dark‐field images at sub‐nanometer resolution. Applying these tools prior to and after PMMA removal from the BCP films, the statistics of feature sizes, LERs, and interfacial widths are determined. In addition, the impact of wet and dry etching processes on PS‐co‐PMMA random copolymer brushes required for substrate functionalization is evaluated. The chemistry, morphology, line edge roughness, and interfacial width of cylindrical nanopores created using the microphase separation of a polystyrene‐b‐polymethylmethacrylate (PS‐b‐PMMA) block‐copolymer and either UV light acetic acid or reactive ion etching treatment for subsequent PMMA removal are revealed at sub‐nanometer resolution using low‐keV Cs‐corrected analytical (scanning) transmission electron microscopy combined with X‐ray photoelectron spectroscopy and polarization‐modulated infrared reflection‐absorption spectroscopy.</description><subject>analytical (S)TEM</subject><subject>Block copolymers</subject><subject>dry etching</subject><subject>Image analysis</subject><subject>Infrared analysis</subject><subject>Infrared reflection</subject><subject>Infrared spectroscopy</subject><subject>line edge roughness</subject><subject>Morphology</subject><subject>Nanolithography</subject><subject>Photoelectrons</subject><subject>Plasma etching</subject><subject>Polymethyl methacrylate</subject><subject>polymethylmethacrylate removal</subject><subject>Polystyrene resins</subject><subject>PS‐b‐PMMA</subject><subject>random copolymer brush</subject><subject>Scanning transmission electron microscopy</subject><subject>Substrates</subject><subject>wet etching</subject><subject>X‐ray photoelectron spectroscopy</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAQhiMEElXpymyJucV26qQeSwu0UgMV7R45iZO6dexgJ6BsvAASz8iT4CoI2BhOd6f7__-kz_MuERwhCPE1y0oxwhBjCGmAT7weRjQYhj6Bp3_mc29g7R5CiBBGeOL3vPeFKHafbx9P3GrZ1EIrsKmbrAU6B7MdUwW3QCgQaVPttNRFC5jK3IWXwtamk7VSqMyIlEmw3risxNU6iqbgRur0AGa60rItuQEPTOmS2YMFWWOEKkDkFjDnL1zqquSqvvDOciYtH3z3vre9u93OFsPV4_1yNl0NU5-EeEhTmlBGaEoI9UkQZgGniCYEBTnJUDCmZMxZkiYswY5GPknzAI6PF5pzFhC_7111sZXRzw23dbzXjVHuY4xD5DuGIQmdatSpUqOtNTyPKyNKZtoYwfgIPT5Cj3-gOwPtDK9C8vYfdTydR8tf7xel0YnQ</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Bürger, Julius</creator><creator>Venugopal, Harikrishnan</creator><creator>Kool, Daniel</creator><creator>Arcos, Teresa</creator><creator>Gonzalez Orive, Alejandro</creator><creator>Grundmeier, Guido</creator><creator>Brassat, Katharina</creator><creator>Lindner, Jörg K.N.</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9090-8677</orcidid><orcidid>https://orcid.org/0000-0002-4420-9389</orcidid><orcidid>https://orcid.org/0000-0003-2367-9610</orcidid><orcidid>https://orcid.org/0000-0003-2550-4048</orcidid></search><sort><creationdate>20220901</creationdate><title>High‐Resolution Study of Changes in Morphology and Chemistry of Cylindrical PS‐b‐PMMA Block Copolymer Nanomasks during Mask Development</title><author>Bürger, Julius ; Venugopal, Harikrishnan ; Kool, Daniel ; Arcos, Teresa ; Gonzalez Orive, Alejandro ; Grundmeier, Guido ; Brassat, Katharina ; Lindner, Jörg K.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3572-9c9b9a59c5593567d6e919b516f5d164954eabcbab2096f8cf6045d169fea653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>analytical (S)TEM</topic><topic>Block copolymers</topic><topic>dry etching</topic><topic>Image analysis</topic><topic>Infrared analysis</topic><topic>Infrared reflection</topic><topic>Infrared spectroscopy</topic><topic>line edge roughness</topic><topic>Morphology</topic><topic>Nanolithography</topic><topic>Photoelectrons</topic><topic>Plasma etching</topic><topic>Polymethyl methacrylate</topic><topic>polymethylmethacrylate removal</topic><topic>Polystyrene resins</topic><topic>PS‐b‐PMMA</topic><topic>random copolymer brush</topic><topic>Scanning transmission electron microscopy</topic><topic>Substrates</topic><topic>wet etching</topic><topic>X‐ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bürger, Julius</creatorcontrib><creatorcontrib>Venugopal, Harikrishnan</creatorcontrib><creatorcontrib>Kool, Daniel</creatorcontrib><creatorcontrib>Arcos, Teresa</creatorcontrib><creatorcontrib>Gonzalez Orive, Alejandro</creatorcontrib><creatorcontrib>Grundmeier, Guido</creatorcontrib><creatorcontrib>Brassat, Katharina</creatorcontrib><creatorcontrib>Lindner, Jörg K.N.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bürger, Julius</au><au>Venugopal, Harikrishnan</au><au>Kool, Daniel</au><au>Arcos, Teresa</au><au>Gonzalez Orive, Alejandro</au><au>Grundmeier, Guido</au><au>Brassat, Katharina</au><au>Lindner, Jörg K.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Resolution Study of Changes in Morphology and Chemistry of Cylindrical PS‐b‐PMMA Block Copolymer Nanomasks during Mask Development</atitle><jtitle>Advanced materials interfaces</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>9</volume><issue>26</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>Nanolithography with self‐assembled block copolymers (BCPs) is an emerging competitive alternative to conventional lithography, which is currently reaching its limits with regard to resolution and economic feasibility. For high‐resolution lithography, both the abruptness of BCP internal interfaces between self‐assembled polymer nanodomains and the processing steps used to selectively remove one of the polymers are crucial. This paper presents a detailed investigation of the chemistry, the mask wall morphology, and the line edge roughness (LER) of self‐assembled nanomasks from polystyrene‐b‐polymethylmethacrylate (PS‐b‐PMMA) before and after selective removal of the PMMA nanodomains. For the latter, either wet or plasma etching are employed and their impact on both the morphology and chemistry of resulting nanomasks is analysed using analytical (scanning) transmission electron microscopy (STEM), X‐ray photoelectron spectroscopy and polarization‐modulated infrared reflection‐absorption spectroscopy. Dedicated image analysis tools are developed to determine for the first time the LER of cylindrical openings in PS masks from STEM dark‐field images at sub‐nanometer resolution. Applying these tools prior to and after PMMA removal from the BCP films, the statistics of feature sizes, LERs, and interfacial widths are determined. In addition, the impact of wet and dry etching processes on PS‐co‐PMMA random copolymer brushes required for substrate functionalization is evaluated. The chemistry, morphology, line edge roughness, and interfacial width of cylindrical nanopores created using the microphase separation of a polystyrene‐b‐polymethylmethacrylate (PS‐b‐PMMA) block‐copolymer and either UV light acetic acid or reactive ion etching treatment for subsequent PMMA removal are revealed at sub‐nanometer resolution using low‐keV Cs‐corrected analytical (scanning) transmission electron microscopy combined with X‐ray photoelectron spectroscopy and polarization‐modulated infrared reflection‐absorption spectroscopy.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.202200962</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9090-8677</orcidid><orcidid>https://orcid.org/0000-0002-4420-9389</orcidid><orcidid>https://orcid.org/0000-0003-2367-9610</orcidid><orcidid>https://orcid.org/0000-0003-2550-4048</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2022-09, Vol.9 (26), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_proquest_journals_2713200757
source Wiley Online Library Journals Frontfile Complete
subjects analytical (S)TEM
Block copolymers
dry etching
Image analysis
Infrared analysis
Infrared reflection
Infrared spectroscopy
line edge roughness
Morphology
Nanolithography
Photoelectrons
Plasma etching
Polymethyl methacrylate
polymethylmethacrylate removal
Polystyrene resins
PS‐b‐PMMA
random copolymer brush
Scanning transmission electron microscopy
Substrates
wet etching
X‐ray photoelectron spectroscopy
title High‐Resolution Study of Changes in Morphology and Chemistry of Cylindrical PS‐b‐PMMA Block Copolymer Nanomasks during Mask Development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A16%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Resolution%20Study%20of%20Changes%20in%20Morphology%20and%20Chemistry%20of%20Cylindrical%20PS%E2%80%90b%E2%80%90PMMA%20Block%20Copolymer%20Nanomasks%20during%20Mask%20Development&rft.jtitle=Advanced%20materials%20interfaces&rft.au=B%C3%BCrger,%20Julius&rft.date=2022-09-01&rft.volume=9&rft.issue=26&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.202200962&rft_dat=%3Cproquest_cross%3E2713200757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713200757&rft_id=info:pmid/&rfr_iscdi=true