Minimax Efficient Random Experimental Design Strategies With Application to Model-Robust Design for Prediction

In game theory and statistical decision theory, a random (i.e., mixed) decision strategy often outperforms a deterministic strategy in minimax expected loss. As experimental design can be viewed as a game pitting the Statistician against Nature, the use of a random strategy to choose a design will o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2022-09, Vol.117 (539), p.1452-1465
Hauptverfasser: Waite, Timothy W., Woods, David C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1465
container_issue 539
container_start_page 1452
container_title Journal of the American Statistical Association
container_volume 117
creator Waite, Timothy W.
Woods, David C.
description In game theory and statistical decision theory, a random (i.e., mixed) decision strategy often outperforms a deterministic strategy in minimax expected loss. As experimental design can be viewed as a game pitting the Statistician against Nature, the use of a random strategy to choose a design will often be beneficial. However, the topic of minimax-efficient random strategies for design selection is mostly unexplored, with consideration limited to Fisherian randomization of the allocation of a predetermined set of treatments to experimental units. Here, for the first time, novel and more flexible random design strategies are shown to have better properties than their deterministic counterparts in linear model estimation and prediction, including stronger bounds on both the expectation and survivor function of the loss distribution. Design strategies are considered for three important statistical problems: (i) parameter estimation in linear potential outcomes models, (ii) point prediction from a correct linear model, and (iii) global prediction from a linear model taking into account an L 2 -class of possible model discrepancy functions. The new random design strategies proposed for (iii) give a finite bound on the expected loss, a dramatic improvement compared to existing deterministic exact designs for which the expected loss is unbounded. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2020.1863221
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_2713136766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713136766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-73461dc8e71ce049e06629e49b24e1e38bb271fb1fd2af3516fc48039e5ef1df3</originalsourceid><addsrcrecordid>eNp9kFtLxDAQhYMouK7-BCHgczWXNm3fFF0voChe0LeQphONdJOaZFH_vSmrr87LwPCdM5yD0D4lh5Q05IhQwWhZtYeMsHxqBGeMbqAZrXhdsLp82USziSkmaBvtxPhO8tRNM0Puxjq7VF94YYzVFlzC98r1fokXXyMEu8wXNeAziPbV4YcUVIJXCxE_2_SGT8ZxsFol6x1OHt_4Hobi3nermP4kxgd8F6C3eqJ20ZZRQ4S93z1HT-eLx9PL4vr24ur05LrQJW1SUfNS0F43UFMNpGyBCMFaKNuOlUCBN13Hamo6anqmDK-oMLpsCG-hAkN7w-foYO07Bv-xgpjku18Fl1_KLOSUi1qITFVrSgcfYwAjx5xYhW9JiZyqlX_Vyqla-Vtt1h2vddbleEv16cPQy6S-Bx9MUE7bKPn_Fj9BfoEC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713136766</pqid></control><display><type>article</type><title>Minimax Efficient Random Experimental Design Strategies With Application to Model-Robust Design for Prediction</title><source>Taylor &amp; Francis:Master (3349 titles)</source><creator>Waite, Timothy W. ; Woods, David C.</creator><creatorcontrib>Waite, Timothy W. ; Woods, David C.</creatorcontrib><description>In game theory and statistical decision theory, a random (i.e., mixed) decision strategy often outperforms a deterministic strategy in minimax expected loss. As experimental design can be viewed as a game pitting the Statistician against Nature, the use of a random strategy to choose a design will often be beneficial. However, the topic of minimax-efficient random strategies for design selection is mostly unexplored, with consideration limited to Fisherian randomization of the allocation of a predetermined set of treatments to experimental units. Here, for the first time, novel and more flexible random design strategies are shown to have better properties than their deterministic counterparts in linear model estimation and prediction, including stronger bounds on both the expectation and survivor function of the loss distribution. Design strategies are considered for three important statistical problems: (i) parameter estimation in linear potential outcomes models, (ii) point prediction from a correct linear model, and (iii) global prediction from a linear model taking into account an L 2 -class of possible model discrepancy functions. The new random design strategies proposed for (iii) give a finite bound on the expected loss, a dramatic improvement compared to existing deterministic exact designs for which the expected loss is unbounded. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2020.1863221</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Decision analysis ; Decision theory ; Design of experiments ; Game theory ; Linear analysis ; Minimax technique ; Parameter estimation ; Potential outcomes ; Randomization ; Regression analysis ; Robust design ; Statistical decision theory ; Statistical methods ; Statistics ; Strategy</subject><ispartof>Journal of the American Statistical Association, 2022-09, Vol.117 (539), p.1452-1465</ispartof><rights>2021 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. 2021</rights><rights>2021 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-73461dc8e71ce049e06629e49b24e1e38bb271fb1fd2af3516fc48039e5ef1df3</citedby><cites>FETCH-LOGICAL-c418t-73461dc8e71ce049e06629e49b24e1e38bb271fb1fd2af3516fc48039e5ef1df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2020.1863221$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2020.1863221$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,27911,27912,59632,60421</link.rule.ids></links><search><creatorcontrib>Waite, Timothy W.</creatorcontrib><creatorcontrib>Woods, David C.</creatorcontrib><title>Minimax Efficient Random Experimental Design Strategies With Application to Model-Robust Design for Prediction</title><title>Journal of the American Statistical Association</title><description>In game theory and statistical decision theory, a random (i.e., mixed) decision strategy often outperforms a deterministic strategy in minimax expected loss. As experimental design can be viewed as a game pitting the Statistician against Nature, the use of a random strategy to choose a design will often be beneficial. However, the topic of minimax-efficient random strategies for design selection is mostly unexplored, with consideration limited to Fisherian randomization of the allocation of a predetermined set of treatments to experimental units. Here, for the first time, novel and more flexible random design strategies are shown to have better properties than their deterministic counterparts in linear model estimation and prediction, including stronger bounds on both the expectation and survivor function of the loss distribution. Design strategies are considered for three important statistical problems: (i) parameter estimation in linear potential outcomes models, (ii) point prediction from a correct linear model, and (iii) global prediction from a linear model taking into account an L 2 -class of possible model discrepancy functions. The new random design strategies proposed for (iii) give a finite bound on the expected loss, a dramatic improvement compared to existing deterministic exact designs for which the expected loss is unbounded. Supplementary materials for this article are available online.</description><subject>Decision analysis</subject><subject>Decision theory</subject><subject>Design of experiments</subject><subject>Game theory</subject><subject>Linear analysis</subject><subject>Minimax technique</subject><subject>Parameter estimation</subject><subject>Potential outcomes</subject><subject>Randomization</subject><subject>Regression analysis</subject><subject>Robust design</subject><subject>Statistical decision theory</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Strategy</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kFtLxDAQhYMouK7-BCHgczWXNm3fFF0voChe0LeQphONdJOaZFH_vSmrr87LwPCdM5yD0D4lh5Q05IhQwWhZtYeMsHxqBGeMbqAZrXhdsLp82USziSkmaBvtxPhO8tRNM0Puxjq7VF94YYzVFlzC98r1fokXXyMEu8wXNeAziPbV4YcUVIJXCxE_2_SGT8ZxsFol6x1OHt_4Hobi3nermP4kxgd8F6C3eqJ20ZZRQ4S93z1HT-eLx9PL4vr24ur05LrQJW1SUfNS0F43UFMNpGyBCMFaKNuOlUCBN13Hamo6anqmDK-oMLpsCG-hAkN7w-foYO07Bv-xgpjku18Fl1_KLOSUi1qITFVrSgcfYwAjx5xYhW9JiZyqlX_Vyqla-Vtt1h2vddbleEv16cPQy6S-Bx9MUE7bKPn_Fj9BfoEC</recordid><startdate>20220914</startdate><enddate>20220914</enddate><creator>Waite, Timothy W.</creator><creator>Woods, David C.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20220914</creationdate><title>Minimax Efficient Random Experimental Design Strategies With Application to Model-Robust Design for Prediction</title><author>Waite, Timothy W. ; Woods, David C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-73461dc8e71ce049e06629e49b24e1e38bb271fb1fd2af3516fc48039e5ef1df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Decision analysis</topic><topic>Decision theory</topic><topic>Design of experiments</topic><topic>Game theory</topic><topic>Linear analysis</topic><topic>Minimax technique</topic><topic>Parameter estimation</topic><topic>Potential outcomes</topic><topic>Randomization</topic><topic>Regression analysis</topic><topic>Robust design</topic><topic>Statistical decision theory</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Strategy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waite, Timothy W.</creatorcontrib><creatorcontrib>Woods, David C.</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waite, Timothy W.</au><au>Woods, David C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimax Efficient Random Experimental Design Strategies With Application to Model-Robust Design for Prediction</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2022-09-14</date><risdate>2022</risdate><volume>117</volume><issue>539</issue><spage>1452</spage><epage>1465</epage><pages>1452-1465</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>In game theory and statistical decision theory, a random (i.e., mixed) decision strategy often outperforms a deterministic strategy in minimax expected loss. As experimental design can be viewed as a game pitting the Statistician against Nature, the use of a random strategy to choose a design will often be beneficial. However, the topic of minimax-efficient random strategies for design selection is mostly unexplored, with consideration limited to Fisherian randomization of the allocation of a predetermined set of treatments to experimental units. Here, for the first time, novel and more flexible random design strategies are shown to have better properties than their deterministic counterparts in linear model estimation and prediction, including stronger bounds on both the expectation and survivor function of the loss distribution. Design strategies are considered for three important statistical problems: (i) parameter estimation in linear potential outcomes models, (ii) point prediction from a correct linear model, and (iii) global prediction from a linear model taking into account an L 2 -class of possible model discrepancy functions. The new random design strategies proposed for (iii) give a finite bound on the expected loss, a dramatic improvement compared to existing deterministic exact designs for which the expected loss is unbounded. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01621459.2020.1863221</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2022-09, Vol.117 (539), p.1452-1465
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_2713136766
source Taylor & Francis:Master (3349 titles)
subjects Decision analysis
Decision theory
Design of experiments
Game theory
Linear analysis
Minimax technique
Parameter estimation
Potential outcomes
Randomization
Regression analysis
Robust design
Statistical decision theory
Statistical methods
Statistics
Strategy
title Minimax Efficient Random Experimental Design Strategies With Application to Model-Robust Design for Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimax%20Efficient%20Random%20Experimental%20Design%20Strategies%20With%20Application%20to%20Model-Robust%20Design%20for%20Prediction&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Waite,%20Timothy%20W.&rft.date=2022-09-14&rft.volume=117&rft.issue=539&rft.spage=1452&rft.epage=1465&rft.pages=1452-1465&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2020.1863221&rft_dat=%3Cproquest_infor%3E2713136766%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713136766&rft_id=info:pmid/&rfr_iscdi=true