An Invitation to Sequential Monte Carlo Samplers

Statisticians often use Monte Carlo methods to approximate probability distributions, primarily with Markov chain Monte Carlo and importance sampling. Sequential Monte Carlo samplers are a class of algorithms that combine both techniques to approximate distributions of interest and their normalizing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2022-09, Vol.117 (539), p.1587-1600
Hauptverfasser: Dai, Chenguang, Heng, Jeremy, Jacob, Pierre E., Whiteley, Nick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1600
container_issue 539
container_start_page 1587
container_title Journal of the American Statistical Association
container_volume 117
creator Dai, Chenguang
Heng, Jeremy
Jacob, Pierre E.
Whiteley, Nick
description Statisticians often use Monte Carlo methods to approximate probability distributions, primarily with Markov chain Monte Carlo and importance sampling. Sequential Monte Carlo samplers are a class of algorithms that combine both techniques to approximate distributions of interest and their normalizing constants. These samplers originate from particle filtering for state space models and have become general and scalable sampling techniques. This article describes sequential Monte Carlo samplers and their possible implementations, arguing that they remain under-used in statistics, despite their ability to perform sequential inference and to leverage parallel processing resources among other potential benefits. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2022.2087659
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2713136634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713136634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-11cc7aa0cf8aa28261deb2c0fe3aa54c0448cc03a9e0d954434cf470c7d47b393</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjwvHXysZvszVL8KFQ8qOAtTLMJbNkmNUmV_nt3qV6dwwwMz_vO8BJyTWFGQcEt0JpRUTUzBowNTcm6ak7IhFZclkyKj1MyGZlyhM7JRUobGEoqNSEw98XSf3UZcxd8kUPxaj_31ucO--I5-GyLBcZ-WON219uYLsmZwz7Zq985Je8P92-Lp3L18rhczFelEVTlklJjJCIYpxCZYjVt7ZoZcJYjVsKAEMoY4NhYaJtKCC6MExKMbIVc84ZPyc3RdxfD8FDKehP20Q8nNZOUU17XXAxUdaRMDClF6_QudluMB01Bj-Hov3D0GI7-DWfQ3R11nXchbvE7xL7VGQ99iC6iN13S_H-LHyY3ahA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713136634</pqid></control><display><type>article</type><title>An Invitation to Sequential Monte Carlo Samplers</title><source>Taylor &amp; Francis Journals Complete</source><creator>Dai, Chenguang ; Heng, Jeremy ; Jacob, Pierre E. ; Whiteley, Nick</creator><creatorcontrib>Dai, Chenguang ; Heng, Jeremy ; Jacob, Pierre E. ; Whiteley, Nick</creatorcontrib><description>Statisticians often use Monte Carlo methods to approximate probability distributions, primarily with Markov chain Monte Carlo and importance sampling. Sequential Monte Carlo samplers are a class of algorithms that combine both techniques to approximate distributions of interest and their normalizing constants. These samplers originate from particle filtering for state space models and have become general and scalable sampling techniques. This article describes sequential Monte Carlo samplers and their possible implementations, arguing that they remain under-used in statistics, despite their ability to perform sequential inference and to leverage parallel processing resources among other potential benefits. Supplementary materials for this article are available online.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2022.2087659</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Algorithms ; Importance sampling ; Interacting particle systems ; Markov analysis ; Markov chains ; Monte Carlo methods ; Monte Carlo simulation ; Normalizing (statistics) ; Normalizing constant ; Parallel processing ; Regression analysis ; Samplers ; Sampling ; Sampling methods ; Sequential inference ; State space models ; Statistical inference ; Statistical methods ; Statistics</subject><ispartof>Journal of the American Statistical Association, 2022-09, Vol.117 (539), p.1587-1600</ispartof><rights>2022 American Statistical Association 2022</rights><rights>2022 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-11cc7aa0cf8aa28261deb2c0fe3aa54c0448cc03a9e0d954434cf470c7d47b393</citedby><cites>FETCH-LOGICAL-c418t-11cc7aa0cf8aa28261deb2c0fe3aa54c0448cc03a9e0d954434cf470c7d47b393</cites><orcidid>0000-0002-3126-6966 ; 0000-0002-8337-626X ; 0000-0003-4959-6856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/01621459.2022.2087659$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/01621459.2022.2087659$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,59652,60441</link.rule.ids></links><search><creatorcontrib>Dai, Chenguang</creatorcontrib><creatorcontrib>Heng, Jeremy</creatorcontrib><creatorcontrib>Jacob, Pierre E.</creatorcontrib><creatorcontrib>Whiteley, Nick</creatorcontrib><title>An Invitation to Sequential Monte Carlo Samplers</title><title>Journal of the American Statistical Association</title><description>Statisticians often use Monte Carlo methods to approximate probability distributions, primarily with Markov chain Monte Carlo and importance sampling. Sequential Monte Carlo samplers are a class of algorithms that combine both techniques to approximate distributions of interest and their normalizing constants. These samplers originate from particle filtering for state space models and have become general and scalable sampling techniques. This article describes sequential Monte Carlo samplers and their possible implementations, arguing that they remain under-used in statistics, despite their ability to perform sequential inference and to leverage parallel processing resources among other potential benefits. Supplementary materials for this article are available online.</description><subject>Algorithms</subject><subject>Importance sampling</subject><subject>Interacting particle systems</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Normalizing (statistics)</subject><subject>Normalizing constant</subject><subject>Parallel processing</subject><subject>Regression analysis</subject><subject>Samplers</subject><subject>Sampling</subject><subject>Sampling methods</subject><subject>Sequential inference</subject><subject>State space models</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QVjwvHXysZvszVL8KFQ8qOAtTLMJbNkmNUmV_nt3qV6dwwwMz_vO8BJyTWFGQcEt0JpRUTUzBowNTcm6ak7IhFZclkyKj1MyGZlyhM7JRUobGEoqNSEw98XSf3UZcxd8kUPxaj_31ucO--I5-GyLBcZ-WON219uYLsmZwz7Zq985Je8P92-Lp3L18rhczFelEVTlklJjJCIYpxCZYjVt7ZoZcJYjVsKAEMoY4NhYaJtKCC6MExKMbIVc84ZPyc3RdxfD8FDKehP20Q8nNZOUU17XXAxUdaRMDClF6_QudluMB01Bj-Hov3D0GI7-DWfQ3R11nXchbvE7xL7VGQ99iC6iN13S_H-LHyY3ahA</recordid><startdate>20220914</startdate><enddate>20220914</enddate><creator>Dai, Chenguang</creator><creator>Heng, Jeremy</creator><creator>Jacob, Pierre E.</creator><creator>Whiteley, Nick</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-3126-6966</orcidid><orcidid>https://orcid.org/0000-0002-8337-626X</orcidid><orcidid>https://orcid.org/0000-0003-4959-6856</orcidid></search><sort><creationdate>20220914</creationdate><title>An Invitation to Sequential Monte Carlo Samplers</title><author>Dai, Chenguang ; Heng, Jeremy ; Jacob, Pierre E. ; Whiteley, Nick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-11cc7aa0cf8aa28261deb2c0fe3aa54c0448cc03a9e0d954434cf470c7d47b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Importance sampling</topic><topic>Interacting particle systems</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Normalizing (statistics)</topic><topic>Normalizing constant</topic><topic>Parallel processing</topic><topic>Regression analysis</topic><topic>Samplers</topic><topic>Sampling</topic><topic>Sampling methods</topic><topic>Sequential inference</topic><topic>State space models</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Chenguang</creatorcontrib><creatorcontrib>Heng, Jeremy</creatorcontrib><creatorcontrib>Jacob, Pierre E.</creatorcontrib><creatorcontrib>Whiteley, Nick</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Chenguang</au><au>Heng, Jeremy</au><au>Jacob, Pierre E.</au><au>Whiteley, Nick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Invitation to Sequential Monte Carlo Samplers</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2022-09-14</date><risdate>2022</risdate><volume>117</volume><issue>539</issue><spage>1587</spage><epage>1600</epage><pages>1587-1600</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>Statisticians often use Monte Carlo methods to approximate probability distributions, primarily with Markov chain Monte Carlo and importance sampling. Sequential Monte Carlo samplers are a class of algorithms that combine both techniques to approximate distributions of interest and their normalizing constants. These samplers originate from particle filtering for state space models and have become general and scalable sampling techniques. This article describes sequential Monte Carlo samplers and their possible implementations, arguing that they remain under-used in statistics, despite their ability to perform sequential inference and to leverage parallel processing resources among other potential benefits. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01621459.2022.2087659</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3126-6966</orcidid><orcidid>https://orcid.org/0000-0002-8337-626X</orcidid><orcidid>https://orcid.org/0000-0003-4959-6856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 2022-09, Vol.117 (539), p.1587-1600
issn 0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_2713136634
source Taylor & Francis Journals Complete
subjects Algorithms
Importance sampling
Interacting particle systems
Markov analysis
Markov chains
Monte Carlo methods
Monte Carlo simulation
Normalizing (statistics)
Normalizing constant
Parallel processing
Regression analysis
Samplers
Sampling
Sampling methods
Sequential inference
State space models
Statistical inference
Statistical methods
Statistics
title An Invitation to Sequential Monte Carlo Samplers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Invitation%20to%20Sequential%20Monte%20Carlo%20Samplers&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Dai,%20Chenguang&rft.date=2022-09-14&rft.volume=117&rft.issue=539&rft.spage=1587&rft.epage=1600&rft.pages=1587-1600&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2022.2087659&rft_dat=%3Cproquest_cross%3E2713136634%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713136634&rft_id=info:pmid/&rfr_iscdi=true