Large field Digital Image Plane Holography with a double cavity high speed laser

The three velocity components in a fluid plane can be measured by applying Digital Image Plane Holography. This technique is limited by the laser coherence length, which reduces its application with high speed lasers that, generally, have a very short coherence length. In addition, the use of a doub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2022-09, Vol.63 (9), Article 150
Hauptverfasser: Lobera, Julia, Arroyo, Mª Pilar, Roche, Eva Mª, Andrés, Nieves, Sancho, Irene, Vernet, Antón, Pallarés, Jordi, Palero, Virginia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Experiments in fluids
container_volume 63
creator Lobera, Julia
Arroyo, Mª Pilar
Roche, Eva Mª
Andrés, Nieves
Sancho, Irene
Vernet, Antón
Pallarés, Jordi
Palero, Virginia
description The three velocity components in a fluid plane can be measured by applying Digital Image Plane Holography. This technique is limited by the laser coherence length, which reduces its application with high speed lasers that, generally, have a very short coherence length. In addition, the use of a double cavity can also imply a small wavelength difference between the two laser beams. In this work, we present an improved Optical Path Length Enlarging Device that allows the velocity measurement, in a 2D field whose width is four times larger than the laser coherence length. The optical set-up and the procedure for measuring in a larger field (ten times the laser coherence length) were optimized, and the issues derived from the laser spatial and temporal coherence and wavelength changes were analyzed and solved. Digital Image Plane Holography with the Optical Path Length Enlarging Device and Particle Image Velocimetry were applied for measuring the whole velocity field in the central plane of a cylindrical cavity with a rotating lid, for two Reynolds numbers (800 and 2000), showing both of them a very good agreement with the numerical simulations. Graphical abstract
doi_str_mv 10.1007/s00348-022-03497-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712866772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712866772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5e02be56a27b39ecb69656b3aeb0e89db470272d9cf1ba9d62333e73f8dca1b93</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwK3Z8ROXRSpXoAc6WnWwSV2kT7BTUf08gSNw47Wo1M6v5ELpm9JZRqu8SpULmhHJOxsVoIk_QjEnBCWNMnqIZ1VwQmSt5ji5S2lLKMkPzGdqsXawBVwHaEj-EOgyuxaudG2-b1u0BL7u2q6PrmyP-DEODHS67g28BF-4jDEfchLrBqQcocesSxEt0Vrk2wdXvnKO3p8fXxZKsX55Xi_s1KYQSA8mAcg-Zclx7YaDwyqhMeeHAU8hN6aWmXPPSFBXzzpSKCyFAiyovC8e8EXN0M-X2sXs_QBrstjvE_fjScs14rpQeK88Rn1RF7FKKUNk-hp2LR8uo_SZnJ3J2JGd_yFk5msRkSqN4X0P8i_7H9QVNvXCP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712866772</pqid></control><display><type>article</type><title>Large field Digital Image Plane Holography with a double cavity high speed laser</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lobera, Julia ; Arroyo, Mª Pilar ; Roche, Eva Mª ; Andrés, Nieves ; Sancho, Irene ; Vernet, Antón ; Pallarés, Jordi ; Palero, Virginia</creator><creatorcontrib>Lobera, Julia ; Arroyo, Mª Pilar ; Roche, Eva Mª ; Andrés, Nieves ; Sancho, Irene ; Vernet, Antón ; Pallarés, Jordi ; Palero, Virginia</creatorcontrib><description>The three velocity components in a fluid plane can be measured by applying Digital Image Plane Holography. This technique is limited by the laser coherence length, which reduces its application with high speed lasers that, generally, have a very short coherence length. In addition, the use of a double cavity can also imply a small wavelength difference between the two laser beams. In this work, we present an improved Optical Path Length Enlarging Device that allows the velocity measurement, in a 2D field whose width is four times larger than the laser coherence length. The optical set-up and the procedure for measuring in a larger field (ten times the laser coherence length) were optimized, and the issues derived from the laser spatial and temporal coherence and wavelength changes were analyzed and solved. Digital Image Plane Holography with the Optical Path Length Enlarging Device and Particle Image Velocimetry were applied for measuring the whole velocity field in the central plane of a cylindrical cavity with a rotating lid, for two Reynolds numbers (800 and 2000), showing both of them a very good agreement with the numerical simulations. Graphical abstract</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-022-03497-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Coherence length ; Digital imaging ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; High speed ; Holography ; Laser beams ; Lasers ; Particle image velocimetry ; Research Article ; Reynolds number ; Velocity ; Velocity distribution ; Velocity measurement</subject><ispartof>Experiments in fluids, 2022-09, Vol.63 (9), Article 150</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5e02be56a27b39ecb69656b3aeb0e89db470272d9cf1ba9d62333e73f8dca1b93</citedby><cites>FETCH-LOGICAL-c363t-5e02be56a27b39ecb69656b3aeb0e89db470272d9cf1ba9d62333e73f8dca1b93</cites><orcidid>0000-0003-1955-6714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-022-03497-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-022-03497-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lobera, Julia</creatorcontrib><creatorcontrib>Arroyo, Mª Pilar</creatorcontrib><creatorcontrib>Roche, Eva Mª</creatorcontrib><creatorcontrib>Andrés, Nieves</creatorcontrib><creatorcontrib>Sancho, Irene</creatorcontrib><creatorcontrib>Vernet, Antón</creatorcontrib><creatorcontrib>Pallarés, Jordi</creatorcontrib><creatorcontrib>Palero, Virginia</creatorcontrib><title>Large field Digital Image Plane Holography with a double cavity high speed laser</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>The three velocity components in a fluid plane can be measured by applying Digital Image Plane Holography. This technique is limited by the laser coherence length, which reduces its application with high speed lasers that, generally, have a very short coherence length. In addition, the use of a double cavity can also imply a small wavelength difference between the two laser beams. In this work, we present an improved Optical Path Length Enlarging Device that allows the velocity measurement, in a 2D field whose width is four times larger than the laser coherence length. The optical set-up and the procedure for measuring in a larger field (ten times the laser coherence length) were optimized, and the issues derived from the laser spatial and temporal coherence and wavelength changes were analyzed and solved. Digital Image Plane Holography with the Optical Path Length Enlarging Device and Particle Image Velocimetry were applied for measuring the whole velocity field in the central plane of a cylindrical cavity with a rotating lid, for two Reynolds numbers (800 and 2000), showing both of them a very good agreement with the numerical simulations. Graphical abstract</description><subject>Coherence length</subject><subject>Digital imaging</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>High speed</subject><subject>Holography</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Particle image velocimetry</subject><subject>Research Article</subject><subject>Reynolds number</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity measurement</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwK3Z8ROXRSpXoAc6WnWwSV2kT7BTUf08gSNw47Wo1M6v5ELpm9JZRqu8SpULmhHJOxsVoIk_QjEnBCWNMnqIZ1VwQmSt5ji5S2lLKMkPzGdqsXawBVwHaEj-EOgyuxaudG2-b1u0BL7u2q6PrmyP-DEODHS67g28BF-4jDEfchLrBqQcocesSxEt0Vrk2wdXvnKO3p8fXxZKsX55Xi_s1KYQSA8mAcg-Zclx7YaDwyqhMeeHAU8hN6aWmXPPSFBXzzpSKCyFAiyovC8e8EXN0M-X2sXs_QBrstjvE_fjScs14rpQeK88Rn1RF7FKKUNk-hp2LR8uo_SZnJ3J2JGd_yFk5msRkSqN4X0P8i_7H9QVNvXCP</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Lobera, Julia</creator><creator>Arroyo, Mª Pilar</creator><creator>Roche, Eva Mª</creator><creator>Andrés, Nieves</creator><creator>Sancho, Irene</creator><creator>Vernet, Antón</creator><creator>Pallarés, Jordi</creator><creator>Palero, Virginia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1955-6714</orcidid></search><sort><creationdate>20220901</creationdate><title>Large field Digital Image Plane Holography with a double cavity high speed laser</title><author>Lobera, Julia ; Arroyo, Mª Pilar ; Roche, Eva Mª ; Andrés, Nieves ; Sancho, Irene ; Vernet, Antón ; Pallarés, Jordi ; Palero, Virginia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5e02be56a27b39ecb69656b3aeb0e89db470272d9cf1ba9d62333e73f8dca1b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coherence length</topic><topic>Digital imaging</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>High speed</topic><topic>Holography</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Particle image velocimetry</topic><topic>Research Article</topic><topic>Reynolds number</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobera, Julia</creatorcontrib><creatorcontrib>Arroyo, Mª Pilar</creatorcontrib><creatorcontrib>Roche, Eva Mª</creatorcontrib><creatorcontrib>Andrés, Nieves</creatorcontrib><creatorcontrib>Sancho, Irene</creatorcontrib><creatorcontrib>Vernet, Antón</creatorcontrib><creatorcontrib>Pallarés, Jordi</creatorcontrib><creatorcontrib>Palero, Virginia</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobera, Julia</au><au>Arroyo, Mª Pilar</au><au>Roche, Eva Mª</au><au>Andrés, Nieves</au><au>Sancho, Irene</au><au>Vernet, Antón</au><au>Pallarés, Jordi</au><au>Palero, Virginia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large field Digital Image Plane Holography with a double cavity high speed laser</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>63</volume><issue>9</issue><artnum>150</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>The three velocity components in a fluid plane can be measured by applying Digital Image Plane Holography. This technique is limited by the laser coherence length, which reduces its application with high speed lasers that, generally, have a very short coherence length. In addition, the use of a double cavity can also imply a small wavelength difference between the two laser beams. In this work, we present an improved Optical Path Length Enlarging Device that allows the velocity measurement, in a 2D field whose width is four times larger than the laser coherence length. The optical set-up and the procedure for measuring in a larger field (ten times the laser coherence length) were optimized, and the issues derived from the laser spatial and temporal coherence and wavelength changes were analyzed and solved. Digital Image Plane Holography with the Optical Path Length Enlarging Device and Particle Image Velocimetry were applied for measuring the whole velocity field in the central plane of a cylindrical cavity with a rotating lid, for two Reynolds numbers (800 and 2000), showing both of them a very good agreement with the numerical simulations. Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-022-03497-4</doi><orcidid>https://orcid.org/0000-0003-1955-6714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2022-09, Vol.63 (9), Article 150
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_journals_2712866772
source SpringerLink Journals - AutoHoldings
subjects Coherence length
Digital imaging
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid flow
Fluid- and Aerodynamics
Heat and Mass Transfer
High speed
Holography
Laser beams
Lasers
Particle image velocimetry
Research Article
Reynolds number
Velocity
Velocity distribution
Velocity measurement
title Large field Digital Image Plane Holography with a double cavity high speed laser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20field%20Digital%20Image%20Plane%20Holography%20with%20a%20double%20cavity%20high%20speed%20laser&rft.jtitle=Experiments%20in%20fluids&rft.au=Lobera,%20Julia&rft.date=2022-09-01&rft.volume=63&rft.issue=9&rft.artnum=150&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-022-03497-4&rft_dat=%3Cproquest_cross%3E2712866772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712866772&rft_id=info:pmid/&rfr_iscdi=true