Large field Digital Image Plane Holography with a double cavity high speed laser
The three velocity components in a fluid plane can be measured by applying Digital Image Plane Holography. This technique is limited by the laser coherence length, which reduces its application with high speed lasers that, generally, have a very short coherence length. In addition, the use of a doub...
Gespeichert in:
Veröffentlicht in: | Experiments in fluids 2022-09, Vol.63 (9), Article 150 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | Experiments in fluids |
container_volume | 63 |
creator | Lobera, Julia Arroyo, Mª Pilar Roche, Eva Mª Andrés, Nieves Sancho, Irene Vernet, Antón Pallarés, Jordi Palero, Virginia |
description | The three velocity components in a fluid plane can be measured by applying Digital Image Plane Holography. This technique is limited by the laser coherence length, which reduces its application with high speed lasers that, generally, have a very short coherence length. In addition, the use of a double cavity can also imply a small wavelength difference between the two laser beams. In this work, we present an improved Optical Path Length Enlarging Device that allows the velocity measurement, in a 2D field whose width is four times larger than the laser coherence length. The optical set-up and the procedure for measuring in a larger field (ten times the laser coherence length) were optimized, and the issues derived from the laser spatial and temporal coherence and wavelength changes were analyzed and solved. Digital Image Plane Holography with the Optical Path Length Enlarging Device and Particle Image Velocimetry were applied for measuring the whole velocity field in the central plane of a cylindrical cavity with a rotating lid, for two Reynolds numbers (800 and 2000), showing both of them a very good agreement with the numerical simulations.
Graphical abstract |
doi_str_mv | 10.1007/s00348-022-03497-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2712866772</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2712866772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5e02be56a27b39ecb69656b3aeb0e89db470272d9cf1ba9d62333e73f8dca1b93</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwK3Z8ROXRSpXoAc6WnWwSV2kT7BTUf08gSNw47Wo1M6v5ELpm9JZRqu8SpULmhHJOxsVoIk_QjEnBCWNMnqIZ1VwQmSt5ji5S2lLKMkPzGdqsXawBVwHaEj-EOgyuxaudG2-b1u0BL7u2q6PrmyP-DEODHS67g28BF-4jDEfchLrBqQcocesSxEt0Vrk2wdXvnKO3p8fXxZKsX55Xi_s1KYQSA8mAcg-Zclx7YaDwyqhMeeHAU8hN6aWmXPPSFBXzzpSKCyFAiyovC8e8EXN0M-X2sXs_QBrstjvE_fjScs14rpQeK88Rn1RF7FKKUNk-hp2LR8uo_SZnJ3J2JGd_yFk5msRkSqN4X0P8i_7H9QVNvXCP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2712866772</pqid></control><display><type>article</type><title>Large field Digital Image Plane Holography with a double cavity high speed laser</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lobera, Julia ; Arroyo, Mª Pilar ; Roche, Eva Mª ; Andrés, Nieves ; Sancho, Irene ; Vernet, Antón ; Pallarés, Jordi ; Palero, Virginia</creator><creatorcontrib>Lobera, Julia ; Arroyo, Mª Pilar ; Roche, Eva Mª ; Andrés, Nieves ; Sancho, Irene ; Vernet, Antón ; Pallarés, Jordi ; Palero, Virginia</creatorcontrib><description>The three velocity components in a fluid plane can be measured by applying Digital Image Plane Holography. This technique is limited by the laser coherence length, which reduces its application with high speed lasers that, generally, have a very short coherence length. In addition, the use of a double cavity can also imply a small wavelength difference between the two laser beams. In this work, we present an improved Optical Path Length Enlarging Device that allows the velocity measurement, in a 2D field whose width is four times larger than the laser coherence length. The optical set-up and the procedure for measuring in a larger field (ten times the laser coherence length) were optimized, and the issues derived from the laser spatial and temporal coherence and wavelength changes were analyzed and solved. Digital Image Plane Holography with the Optical Path Length Enlarging Device and Particle Image Velocimetry were applied for measuring the whole velocity field in the central plane of a cylindrical cavity with a rotating lid, for two Reynolds numbers (800 and 2000), showing both of them a very good agreement with the numerical simulations.
Graphical abstract</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-022-03497-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Coherence length ; Digital imaging ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; High speed ; Holography ; Laser beams ; Lasers ; Particle image velocimetry ; Research Article ; Reynolds number ; Velocity ; Velocity distribution ; Velocity measurement</subject><ispartof>Experiments in fluids, 2022-09, Vol.63 (9), Article 150</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5e02be56a27b39ecb69656b3aeb0e89db470272d9cf1ba9d62333e73f8dca1b93</citedby><cites>FETCH-LOGICAL-c363t-5e02be56a27b39ecb69656b3aeb0e89db470272d9cf1ba9d62333e73f8dca1b93</cites><orcidid>0000-0003-1955-6714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-022-03497-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-022-03497-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lobera, Julia</creatorcontrib><creatorcontrib>Arroyo, Mª Pilar</creatorcontrib><creatorcontrib>Roche, Eva Mª</creatorcontrib><creatorcontrib>Andrés, Nieves</creatorcontrib><creatorcontrib>Sancho, Irene</creatorcontrib><creatorcontrib>Vernet, Antón</creatorcontrib><creatorcontrib>Pallarés, Jordi</creatorcontrib><creatorcontrib>Palero, Virginia</creatorcontrib><title>Large field Digital Image Plane Holography with a double cavity high speed laser</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>The three velocity components in a fluid plane can be measured by applying Digital Image Plane Holography. This technique is limited by the laser coherence length, which reduces its application with high speed lasers that, generally, have a very short coherence length. In addition, the use of a double cavity can also imply a small wavelength difference between the two laser beams. In this work, we present an improved Optical Path Length Enlarging Device that allows the velocity measurement, in a 2D field whose width is four times larger than the laser coherence length. The optical set-up and the procedure for measuring in a larger field (ten times the laser coherence length) were optimized, and the issues derived from the laser spatial and temporal coherence and wavelength changes were analyzed and solved. Digital Image Plane Holography with the Optical Path Length Enlarging Device and Particle Image Velocimetry were applied for measuring the whole velocity field in the central plane of a cylindrical cavity with a rotating lid, for two Reynolds numbers (800 and 2000), showing both of them a very good agreement with the numerical simulations.
Graphical abstract</description><subject>Coherence length</subject><subject>Digital imaging</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>High speed</subject><subject>Holography</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>Particle image velocimetry</subject><subject>Research Article</subject><subject>Reynolds number</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Velocity measurement</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEtPwzAQhC0EEqXwBzhZ4mzwK3Z8ROXRSpXoAc6WnWwSV2kT7BTUf08gSNw47Wo1M6v5ELpm9JZRqu8SpULmhHJOxsVoIk_QjEnBCWNMnqIZ1VwQmSt5ji5S2lLKMkPzGdqsXawBVwHaEj-EOgyuxaudG2-b1u0BL7u2q6PrmyP-DEODHS67g28BF-4jDEfchLrBqQcocesSxEt0Vrk2wdXvnKO3p8fXxZKsX55Xi_s1KYQSA8mAcg-Zclx7YaDwyqhMeeHAU8hN6aWmXPPSFBXzzpSKCyFAiyovC8e8EXN0M-X2sXs_QBrstjvE_fjScs14rpQeK88Rn1RF7FKKUNk-hp2LR8uo_SZnJ3J2JGd_yFk5msRkSqN4X0P8i_7H9QVNvXCP</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Lobera, Julia</creator><creator>Arroyo, Mª Pilar</creator><creator>Roche, Eva Mª</creator><creator>Andrés, Nieves</creator><creator>Sancho, Irene</creator><creator>Vernet, Antón</creator><creator>Pallarés, Jordi</creator><creator>Palero, Virginia</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1955-6714</orcidid></search><sort><creationdate>20220901</creationdate><title>Large field Digital Image Plane Holography with a double cavity high speed laser</title><author>Lobera, Julia ; Arroyo, Mª Pilar ; Roche, Eva Mª ; Andrés, Nieves ; Sancho, Irene ; Vernet, Antón ; Pallarés, Jordi ; Palero, Virginia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5e02be56a27b39ecb69656b3aeb0e89db470272d9cf1ba9d62333e73f8dca1b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Coherence length</topic><topic>Digital imaging</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>High speed</topic><topic>Holography</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>Particle image velocimetry</topic><topic>Research Article</topic><topic>Reynolds number</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Velocity measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobera, Julia</creatorcontrib><creatorcontrib>Arroyo, Mª Pilar</creatorcontrib><creatorcontrib>Roche, Eva Mª</creatorcontrib><creatorcontrib>Andrés, Nieves</creatorcontrib><creatorcontrib>Sancho, Irene</creatorcontrib><creatorcontrib>Vernet, Antón</creatorcontrib><creatorcontrib>Pallarés, Jordi</creatorcontrib><creatorcontrib>Palero, Virginia</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobera, Julia</au><au>Arroyo, Mª Pilar</au><au>Roche, Eva Mª</au><au>Andrés, Nieves</au><au>Sancho, Irene</au><au>Vernet, Antón</au><au>Pallarés, Jordi</au><au>Palero, Virginia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large field Digital Image Plane Holography with a double cavity high speed laser</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>63</volume><issue>9</issue><artnum>150</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>The three velocity components in a fluid plane can be measured by applying Digital Image Plane Holography. This technique is limited by the laser coherence length, which reduces its application with high speed lasers that, generally, have a very short coherence length. In addition, the use of a double cavity can also imply a small wavelength difference between the two laser beams. In this work, we present an improved Optical Path Length Enlarging Device that allows the velocity measurement, in a 2D field whose width is four times larger than the laser coherence length. The optical set-up and the procedure for measuring in a larger field (ten times the laser coherence length) were optimized, and the issues derived from the laser spatial and temporal coherence and wavelength changes were analyzed and solved. Digital Image Plane Holography with the Optical Path Length Enlarging Device and Particle Image Velocimetry were applied for measuring the whole velocity field in the central plane of a cylindrical cavity with a rotating lid, for two Reynolds numbers (800 and 2000), showing both of them a very good agreement with the numerical simulations.
Graphical abstract</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-022-03497-4</doi><orcidid>https://orcid.org/0000-0003-1955-6714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-4864 |
ispartof | Experiments in fluids, 2022-09, Vol.63 (9), Article 150 |
issn | 0723-4864 1432-1114 |
language | eng |
recordid | cdi_proquest_journals_2712866772 |
source | SpringerLink Journals - AutoHoldings |
subjects | Coherence length Digital imaging Engineering Engineering Fluid Dynamics Engineering Thermodynamics Fluid flow Fluid- and Aerodynamics Heat and Mass Transfer High speed Holography Laser beams Lasers Particle image velocimetry Research Article Reynolds number Velocity Velocity distribution Velocity measurement |
title | Large field Digital Image Plane Holography with a double cavity high speed laser |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A45%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20field%20Digital%20Image%20Plane%20Holography%20with%20a%20double%20cavity%20high%20speed%20laser&rft.jtitle=Experiments%20in%20fluids&rft.au=Lobera,%20Julia&rft.date=2022-09-01&rft.volume=63&rft.issue=9&rft.artnum=150&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-022-03497-4&rft_dat=%3Cproquest_cross%3E2712866772%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2712866772&rft_id=info:pmid/&rfr_iscdi=true |